首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cutaneous leishmaniasis due to Leishmania tropica is increasingly documented in Europe and the Middle East. Besides its specific vector, Phlebotomus sergenti, permissive Phlebotomus sand flies are suspected as potential vectors of L. tropica. We investigated the susceptibility of two widely distributed species, Phlebotomus perniciosus and Phlebotomus tobbi. Laboratory-reared sand flies were infected experimentally with L. tropica strains differing in lipophosphoglycan epitopes, geographical distribution and epidemiology. High infection rates, heavy parasite loads and fully developed late-stage infections including colonization of the stomodeal valve were observed in all parasite-vector combinations. Our findings demonstrate that P. perniciosus and P. tobbi are susceptible to different L. tropica strains and may play a role in their circulation in endemic foci of Europe, the Middle East and North Africa.  相似文献   

3.
Shiraz district in south of Iran is a classical focus of Cutaneous leishmaniasis (CL) and previous research has consistently documented the etiologic agent to be Leishmania tropica and Leishmania major in urban and rural areas, respectively. However, none of the Phlebotomus sergenti, a known vector for L. tropica, of the region has been found infected. We report the first isolation of L. tropica from sandflies in urban community of southern part of Shiraz city. Parasite polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) and gene sequencing analyses indicate CL cases in this community were caused by either L. major or L. tropica. Sandflies of P. sergenti were infrequent, however, three out of 10 (30.0%) females captured in urban area were found infected with L. tropica. But, no human cases were found to be infected with L. tropica. Phlebotomus papatasi were found the most dominant and infected species where 41 out of 207 (20%) tested individuals harboring L. major in suburb area of the city. Patients have been lived in the suburb area of the city where people keep normally domestic animals in their houses which provide appropriate environment for completion of sandfly life cycle and expansion of CL disease in the region.  相似文献   

4.
Cutaneous leishmaniasis (CL) due to Leishmania tropica is a neglected tropical disease characterized by a wide geographical distribution in the Mediterranean basin and is endemic in several of its countries. In addition, the vector Phlebotomus sergenti is abundantly present all around the basin. Its transmission cycle is still subject to debate. In some countries, the presence of an animal reservoir has been confirmed. In Morocco, CL due to L. tropica has risen since the 1980s and has spread widely to become the most abundant form of leishmaniasis in the territory. However, the anthroponotic transmission is so far the only recognized mode, despite recordings of L. tropica infection in animal hosts. In this review article, we assess the situation of CL due to L. tropica in the Mediterranean basin with a focus on Morocco and gather knowledge about any potential zoonotic transmission in the country. A concomitant zoonotic transmission could explain the persistence of the disease in areas where human protective measures combined with vector management did not help reduce the disease burden.  相似文献   

5.
6.
《Journal of Asia》2023,26(4):102129
Cutaneous Leishmaniasis is endemic in tribal district Khyber for last more than one decade. The causative agent Leishmania tropica is known but sand fly species responsible for the transmission of disease still needs to be investigated. A total of 2647 Phlebotomus females belonging to 11 species were divided into 435 batches and subjected to PCR for detection of Leishmania in sand flies. A total of 50 batches belonging to three species i.e. Phlebotomus sergenti, Phlebotomus papatasi and Phlebotomus alexandri were detected positive for Leishmania tropica. Overall minimum infection rate was 1.89% (50/2647). Highest minimum infection rate of 2.11% (39/1710) was observed for Phlebotomus sergenti followed by 1.21% (8/661) for Phlebotomus paptasi and 1.82% (3/165) for Phlebotomus alexandri. Both blood fed (38%) and unfed (62%) sand flies were detected positive for the parasite DNA. Positive specimens were collected throughout the active season, from all collection sites of the study area. Detection of Leishmania parasite in multiple species of Phlebotomus indicates the possible role of these species as vector of disease in the tribal district Khyber of Pakistan. It also indicates the probable complex transmission cycle of the disease involving multiple vector species in the study area. Devising a control strategy by focusing on these vector species, may reduce the disease burden in the cutaneous leishmaniasis endemic tribal district Khyber.  相似文献   

7.

Background:

Leishmaniasis, especially cutaneous leishmaniasis, is considered an important health problem in many parts of Iran including Kharve, Khorasan Razavi province. Cutaneous leishmaniasis is caused by various species of Leishmania, each having a different secondary host. Thus, identifying the parasites’ specie is of paramount importance for containment strategy planning. The morphological differentiation of Leishmania species is not possible, rendering the molecular methods as the sole means to this purpose. Therefore, to identify the causative agent of cutaneous leishmaniasis in Kharve, Random Amplified Polymorphic DNA-PCR (RAPD-PCR) was used.

Methods:

The disease was first confirmed by direct smears. Samples were gathered from 22 patients with established cutaneous leishmaniasis. The samples were immediately cultured in NNN medium, followed by sub-culture in RPMI-1640. Afterwards, DNA was extracted and amplified using RAPD-PCR. Electrophoresis patterns from each isolate were compared with reference strains of Leishmania major (L. major) and Leishmania tropica (L. tropica).

Results:

The results of this study indicated that the parasite causing cutaneous leishmaniasis in Kharve is L. tropica.

Conclusion:

It seems that L. tropica is the only causative agent of cutaneous leishmaniasis in Kharve, and RAPD-PCR is a suitable tool for Leishmania characterization in epidemiological studies.Key Words: Leishmania major, Leishmania tropica, RAPD-PCR, Khorasan, Kharve  相似文献   

8.

Background

Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA.

Methodology/Principal Findings

In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area.

Conclusions/Significance

The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic.  相似文献   

9.

Background

Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models.

Methods

We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured.

Principal Findings

Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain.

Conclusion

Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.  相似文献   

10.
11.

Background

Three major forms of human disease, cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis, are caused by several leishmanial species whose geographic distribution frequently overlaps. These Leishmania species have diverse reservoir hosts, sand fly vectors and transmission patterns. In the Old World, the main parasite species responsible for leishmaniasis are Leishmania infantum, L. donovani, L. tropica, L. aethiopica and L. major. Accurate, rapid and sensitive diagnostic and identification procedures are crucial for the detection of infection and characterization of the causative leishmanial species, in order to provide accurate treatment, precise prognosis and appropriate public health control measures.

Methods/Principal Findings

High resolution melt analysis of a real time PCR product from the Internal Transcribed Spacer-1 rRNA region was used to identify and quantify Old World Leishmania in 300 samples from human patients, reservoir hosts and sand flies. Different characteristic high resolution melt analysis patterns were exhibited by L. major, L. tropica, L. aethiopica, and L. infantum. Genotyping by high resolution melt analysis was verified by DNA sequencing or restriction fragment length polymorphism. This new assay was able to detect as little as 2-4 ITS1 gene copies in a 5 µl DNA sample, i.e., less than a single parasite per reaction.

Conclusions/Significance

This new technique is useful for rapid diagnosis of leishmaniasis and simultaneous identification and quantification of the infecting Leishmania species. It can be used for diagnostic purposes directly from clinical samples, as well as epidemiological studies, reservoir host investigations and vector surveys.  相似文献   

12.
The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection.  相似文献   

13.
In Old World Leishmania infections in India, Leishmania donovani is responsible for visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) while L. tropica is responsible for cutaneous leishmaniasis (CL) in humans. The molecular differences between the two species of Leishmania and within the same species causing distinct pathologies that govern the outcome of infection and pathogenesis in the human host are unknown. Quantitative expression of selected genes was evaluated directly in lesion tissues of VL, PKDL and CL patients. Assessment of in vivo mRNA level highlighted substantial differences in gene expression patterns, providing an indication of the genes involved in pathogenesis in the three different forms of Leishmaniasis.  相似文献   

14.
Leishmania tropica is one of the causative agents of leishmaniasis in humans. Routes of infection have been reported to be an important variable for some species of Leishmania parasites. The role of this variable is not clear for L. tropica infection. The aim of this study was to explore the effects of route of L. tropica infection on the disease outcome and immunologic parameters in BALB/c mice. Two routes were used; subcutaneous in the footpad and intradermal in the ear. Mice were challenged by Leishmani major, after establishment of the L. tropica infection, to evaluate the level of protective immunity. Immune responses were assayed at week 1 and week 4 after challenge. The subcutaneous route in the footpad in comparison to the intradermal route in the ear induced significantly more protective immunity against L. major challenge, including higher delayed-type hypersensitivity responses, more rapid lesion resolution, lower parasite loads, and lower levels of IL-10. Our data showed that the route of infection in BALB/c model of L. tropica infection is an important variable and should be considered in developing an appropriate experimental model for L. tropica infections.  相似文献   

15.

Background

Cutaneous leishmaniasis (CL) is a neglected tropical disease endemic in the tropics and subtropics with a global yearly incidence of 1.5 million. Although CL is the most common form of leishmaniasis, which is responsible for 60% of DALYs lost due to tropical-cluster diseases prevalent in Yemen, available information is very limited.

Methodology/Principal Findings

This study was conducted to determine the molecular characterization of Leishmania species isolated from human cutaneous lesions in Yemen. Dermal scrapes were collected and examined for Leishmania amastigotes using the Giemsa staining technique. Amplification of the ribosomal internal transcribed spacer 1(ITS-1) gene was carried out using nested PCR and subsequent sequencing. The sequences from Leishmania isolates were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods. The trees identified Leishmania tropica from 16 isolates which were represented by two sequence types.

Conclusions/Significance

The predominance of the anthroponotic species (i.e. L. tropica) indicates the probability of anthroponotic transmission of cutaneous leishmaniasis in Yemen. These findings will help public health authorities to build an effective control strategy taking into consideration person–to-person transmission as the main dynamic of transmission of CL.  相似文献   

16.
Leishmania (L.) killicki (syn. L. tropica), which causes cutaneous leishmaniasis in Maghreb, was recently described in this region and identified as a subpopulation of L. tropica. The present genetic analysis was conducted to explore the spatio-temporal distribution of L. killicki (syn. L. tropica) and its transmission dynamics. To better understand the evolution of this parasite, its population structure was then compared with that of L. tropica populations from Morocco. In total 198 samples including 85 L. killicki (syn. L. tropica) (from Tunisia, Algeria and Libya) and 113 L. tropica specimens (all from Morocco) were tested. Theses samples were composed of 168 Leishmania strains isolated from human skin lesions, 27 DNA samples from human skin lesion biopsies, two DNA samples from Ctenodactylus gundi bone marrow and one DNA sample from a Phlebotomus sergenti female. The sample was analyzed by using MultiLocus Enzyme Electrophoresis (MLEE) and MultiLocus Microsatellite Typing (MLMT) approaches. Analysis of the MLMT data support the hypothesis that L. killicki (syn. L. tropica) belongs to the L. tropica complex, despite its strong genetic differentiation, and that it emerged from this taxon by a founder effect. Moreover, it revealed a strong structuring in L. killicki (syn. L. tropica) between Tunisia and Algeria and within the different Tunisian regions, suggesting low dispersion of L. killicki (syn. L. tropica) in space and time. Comparison of the L. tropica (exclusively from Morocco) and L. killicki (syn. L. tropica) population structures revealed distinct genetic organizations, reflecting different epidemiological cycles.  相似文献   

17.
BackgroundDiscovered by Nicolle and Comte in 1908 in Tunisia, Leishmania infantum is an intracellular protozoan responsible for zoonotic canine leishmaniosis (CanL) and zoonotic human visceral leishmaniasis (HVL). It is endemic in several regions of the world, including Tunisia, with dogs considered as the main domestic reservoir. The geographic expansion of canine leishmaniosis (CanL) has been linked to global environmental changes that have affected the density and the distribution of its sand fly vectors.Methodology/Principal findingsIn this study, a cross-sectional epidemiological survey on CanL was carried out in 8 localities in 8 bioclimatic areas of Tunisia. Blood samples were taken from 317 dogs after clinical examination. Collected sera were tested by indirect fluorescent antibody test (IFAT; 1:80) for the presence of anti-Leishmania infantum antibodies. The overall seroprevalence was 58.3% (185/317). Among positive dogs, only 16.7% showed clinical signs suggestive of leishmaniosis. Seroprevalence rates varied from 6.8% to 84.6% and from 28% to 66% by bioclimatic zone and age group, respectively. Serological positivity was not statistically associated with gender. The presence of Leishmania DNA in blood, using PCR, revealed 21.2% (64/302) prevalence in dogs, which varied by bioclimatic zone (7.3% to 31%) and age group (7% to 25%). The entomological survey carried out in the studied localities showed 16 species of the two genera (Phlebotomus and Sergentomyia). P. perniciosus, P. papatasi, and P. perfiliewi were the most dominant species with relative abundances of 34.7%, 25% and 20.4%, respectively.Conclusions/SignificanceThe present report suggests a significant increase of CanL in all bioclimatic areas in Tunisia and confirms the ongoing spread of the infection of dogs to the country’s arid zone. Such an expansion of infection in dog population could be attributed to ecological, agronomic, social and climatic factors that affect the presence and density of the phlebotomine vectors.  相似文献   

18.
Cutaneous leishmaniasis (CL) is a neglected clinical form of public health importance that is quite prevalent in the northern and eastern parts of Egypt. A comprehensive study over seven years (January 2005-December 2011) was conducted to track CL transmission with respect to both sandfly vectors and animal reservoirs. The study identified six sandfly species collected from different districts in North Sinai: Phlebotomus papatasi, Phlebotomus kazeruni, Phlebotomus sergenti, Phlebotomus alexandri, Sergentomyia antennata and Sergentomyia clydei. Leishmania (-)-like flagellates were identified in 15 P. papatasi individuals (0.5% of 3,008 dissected females). Rodent populations were sampled in the same districts where sandflies were collected and eight species were identified: Rattus norvegicus (n = 39), Rattus rattus frugivorous (n = 13), Rattus rattus alexandrinus (n = 4), Gerbillus pyramidum floweri (n = 38), Gerbillus andersoni (n = 28), Mus musculus (n = 5), Meriones sacramenti (n = 22) and Meriones crassus (n = 10). Thirty-two rodents were found to be positive for Leishmania infection (20.12% of 159 examined rodents). Only Leishmania major was isolated and identified in 100% of the parasite samples. The diversity of both the vector and rodent populations was examined using diversity indices and clustering approaches.  相似文献   

19.
Leishmaniasis is a vector borne disease caused by protozoa of the genus Leishmania. Human leishmaniasis is not endemic in Australia though imported cases are regularly encountered. This study aimed to provide an update on the molecular epidemiology of imported leishmaniasis in Australia. Of a total of 206 biopsies and bone marrow specimens submitted to St Vincent’s Hospital Sydney for leishmaniasis diagnosis by PCR, 55 were found to be positive for Leishmania DNA. All PCR products were subjected to restriction fragment length polymorphism analysis for identification of the causative species. Five Leishmania species/species complexes were identified with Leishmania tropica being the most common (30/55). Travel or prior residence in a Leishmania endemic region was the most common route of acquisition with ~47% of patients having lived in or travelled to Afghanistan. Cutaneous leishmaniasis was the most common manifestation (94%) with only 3 cases of visceral leishmaniasis and no cases of mucocutaneous leishmaniasis encountered. This report indicates that imported leishmaniasis is becoming increasingly common in Australia due to an increase in global travel and immigration. As such, Australian clinicians must be made aware of this trend and consider leishmaniasis in patients with suspicious symptoms and a history of travel in endemic areas. This study also discusses the recent identification of a unique Leishmania species found in native kangaroos and a potential vector host which could create the opportunity for the establishment of a local transmission cycle within humans.  相似文献   

20.
Background:Leishmania (L) major and L. tropica are the etiological agents of cutaneous leishmaniosis. Leishmania species cause a board spectrum of phenotypes. A small number of genes are differentially expressed between them that have likely an important role in the disease phenotype. Procyclic and metacyclic are two morphological promastigote forms of Leishmania that express different genes. The glutathione peroxidase is an important antioxidant enzyme that essential in parasite protection against oxidative stress and parasite survival. This study aimed to compare glutathione peroxidase (TDPX) gene expression in procyclic and metacyclic and also interspecies in Iranian isolates of L. major and L. tropica. Methods:The samples were cultured in Novy-Nicolle-Mc Neal medium to obtain the promastigotes and identified using PCR-RFLP technique. They were then grown in RPMI1640 media for mass cultivation. The expression level of TDPX gene was compared by Real-time PCR.Results:By comparison of expression level, up-regulation of TDPX gene was observed (5.37 and 2.29 folds) in L. major and L. tropica metacyclic compared to their procyclic, respectively. Moreover, there was no significant difference between procyclic forms of isolates, while 3.05 folds up-regulation in metacyclic was detected in L. major compared L. tropica.Conclusion:Our data provide a foundation for identifying infectivity and high survival related factors in the Leishmania spp. In addition, the results improve our understanding of the molecular basis of metacyclogenesis and development of new potential targets to control or treatment and also, to the identification of species-specific factors contributing to virulence and pathogenicity in the host cells.Key Words: Glutathione peroxidase, Leishmania, L. major, L. tropica, Quantitative Real-time PCR  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号