首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).  相似文献   

2.
To obtain a coherent perception of the world, our senses need to be in alignment. When we encounter misaligned cues from two sensory modalities, the brain must infer which cue is faulty and recalibrate the corresponding sense. We examined whether and how the brain uses cue reliability to identify the miscalibrated sense by measuring the audiovisual ventriloquism aftereffect for stimuli of varying visual reliability. To adjust for modality-specific biases, visual stimulus locations were chosen based on perceived alignment with auditory stimulus locations for each participant. During an audiovisual recalibration phase, participants were presented with bimodal stimuli with a fixed perceptual spatial discrepancy; they localized one modality, cued after stimulus presentation. Unimodal auditory and visual localization was measured before and after the audiovisual recalibration phase. We compared participants’ behavior to the predictions of three models of recalibration: (a) Reliability-based: each modality is recalibrated based on its relative reliability—less reliable cues are recalibrated more; (b) Fixed-ratio: the degree of recalibration for each modality is fixed; (c) Causal-inference: recalibration is directly determined by the discrepancy between a cue and its estimate, which in turn depends on the reliability of both cues, and inference about how likely the two cues derive from a common source. Vision was hardly recalibrated by audition. Auditory recalibration by vision changed idiosyncratically as visual reliability decreased: the extent of auditory recalibration either decreased monotonically, peaked at medium visual reliability, or increased monotonically. The latter two patterns cannot be explained by either the reliability-based or fixed-ratio models. Only the causal-inference model of recalibration captures the idiosyncratic influences of cue reliability on recalibration. We conclude that cue reliability, causal inference, and modality-specific biases guide cross-modal recalibration indirectly by determining the perception of audiovisual stimuli.  相似文献   

3.
Yamamoto K  Kawabata H 《PloS one》2011,6(12):e29414

Background

We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF). DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique.

Methods and Findings

Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms) during three minutes to induce ‘Lag Adaptation’. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase.

Conclusions

These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.  相似文献   

4.
Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.  相似文献   

5.
Hasson U  Skipper JI  Nusbaum HC  Small SL 《Neuron》2007,56(6):1116-1126
Is there a neural representation of speech that transcends its sensory properties? Using fMRI, we investigated whether there are brain areas where neural activity during observation of sublexical audiovisual input corresponds to a listener's speech percept (what is "heard") independent of the sensory properties of the input. A target audiovisual stimulus was preceded by stimuli that (1) shared the target's auditory features (auditory overlap), (2) shared the target's visual features (visual overlap), or (3) shared neither the target's auditory or visual features but were perceived as the target (perceptual overlap). In two left-hemisphere regions (pars opercularis, planum polare), the target invoked less activity when it was preceded by the perceptually overlapping stimulus than when preceded by stimuli that shared one of its sensory components. This pattern of neural facilitation indicates that these regions code sublexical speech at an abstract level corresponding to that of the speech percept.  相似文献   

6.
Li Y  Wang G  Long J  Yu Z  Huang B  Li X  Yu T  Liang C  Li Z  Sun P 《PloS one》2011,6(6):e20801
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.  相似文献   

7.
After repeated exposures to two successive audiovisual stimuli presented in one frequent order, participants eventually perceive a pair separated by some lag time in the same order as occurring simultaneously (lag adaptation). In contrast, we previously found that perceptual changes occurred in the opposite direction in response to tactile stimuli, conforming to bayesian integration theory (bayesian calibration). We further showed, in theory, that the effect of bayesian calibration cannot be observed when the lag adaptation was fully operational. This led to the hypothesis that bayesian calibration affects judgments regarding the order of audiovisual stimuli, but that this effect is concealed behind the lag adaptation mechanism. In the present study, we showed that lag adaptation is pitch-insensitive using two sounds at 1046 and 1480 Hz. This enabled us to cancel lag adaptation by associating one pitch with sound-first stimuli and the other with light-first stimuli. When we presented each type of stimulus (high- or low-tone) in a different block, the point of simultaneity shifted to "sound-first" for the pitch associated with sound-first stimuli, and to "light-first" for the pitch associated with light-first stimuli. These results are consistent with lag adaptation. In contrast, when we delivered each type of stimulus in a randomized order, the point of simultaneity shifted to "light-first" for the pitch associated with sound-first stimuli, and to "sound-first" for the pitch associated with light-first stimuli. The results clearly show that bayesian calibration is pitch-specific and is at work behind pitch-insensitive lag adaptation during temporal order judgment of audiovisual stimuli.  相似文献   

8.
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.  相似文献   

9.
Speech perception often benefits from vision of the speaker's lip movements when they are available. One potential mechanism underlying this reported gain in perception arising from audio-visual integration is on-line prediction. In this study we address whether the preceding speech context in a single modality can improve audiovisual processing and whether this improvement is based on on-line information-transfer across sensory modalities. In the experiments presented here, during each trial, a speech fragment (context) presented in a single sensory modality (voice or lips) was immediately continued by an audiovisual target fragment. Participants made speeded judgments about whether voice and lips were in agreement in the target fragment. The leading single sensory context and the subsequent audiovisual target fragment could be continuous in either one modality only, both (context in one modality continues into both modalities in the target fragment) or neither modalities (i.e., discontinuous). The results showed quicker audiovisual matching responses when context was continuous with the target within either the visual or auditory channel (Experiment 1). Critically, prior visual context also provided an advantage when it was cross-modally continuous (with the auditory channel in the target), but auditory to visual cross-modal continuity resulted in no advantage (Experiment 2). This suggests that visual speech information can provide an on-line benefit for processing the upcoming auditory input through the use of predictive mechanisms. We hypothesize that this benefit is expressed at an early level of speech analysis.  相似文献   

10.
The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible--adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects.  相似文献   

11.
An increasing number of neuroscience papers capitalize on the assumption published in this journal that visual speech would be typically 150 ms ahead of auditory speech. It happens that the estimation of audiovisual asynchrony in the reference paper is valid only in very specific cases, for isolated consonant-vowel syllables or at the beginning of a speech utterance, in what we call “preparatory gestures”. However, when syllables are chained in sequences, as they are typically in most parts of a natural speech utterance, asynchrony should be defined in a different way. This is what we call “comodulatory gestures” providing auditory and visual events more or less in synchrony. We provide audiovisual data on sequences of plosive-vowel syllables (pa, ta, ka, ba, da, ga, ma, na) showing that audiovisual synchrony is actually rather precise, varying between 20 ms audio lead and 70 ms audio lag. We show how more complex speech material should result in a range typically varying between 40 ms audio lead and 200 ms audio lag, and we discuss how this natural coordination is reflected in the so-called temporal integration window for audiovisual speech perception. Finally we present a toy model of auditory and audiovisual predictive coding, showing that visual lead is actually not necessary for visual prediction.  相似文献   

12.
Visual motion information from dynamic environments is important in multisensory temporal perception. However, it is unclear how visual motion information influences the integration of multisensory temporal perceptions. We investigated whether visual apparent motion affects audiovisual temporal perception. Visual apparent motion is a phenomenon in which two flashes presented in sequence in different positions are perceived as continuous motion. Across three experiments, participants performed temporal order judgment (TOJ) tasks. Experiment 1 was a TOJ task conducted in order to assess audiovisual simultaneity during perception of apparent motion. The results showed that the point of subjective simultaneity (PSS) was shifted toward a sound-lead stimulus, and the just noticeable difference (JND) was reduced compared with a normal TOJ task with a single flash. This indicates that visual apparent motion affects audiovisual simultaneity and improves temporal discrimination in audiovisual processing. Experiment 2 was a TOJ task conducted in order to remove the influence of the amount of flash stimulation from Experiment 1. The PSS and JND during perception of apparent motion were almost identical to those in Experiment 1, but differed from those for successive perception when long temporal intervals were included between two flashes without motion. This showed that the result obtained under the apparent motion condition was unaffected by the amount of flash stimulation. Because apparent motion was produced by a constant interval between two flashes, the results may be accounted for by specific prediction. In Experiment 3, we eliminated the influence of prediction by randomizing the intervals between the two flashes. However, the PSS and JND did not differ from those in Experiment 1. It became clear that the results obtained for the perception of visual apparent motion were not attributable to prediction. Our findings suggest that visual apparent motion changes temporal simultaneity perception and improves temporal discrimination in audiovisual processing.  相似文献   

13.

Background

When one watches a sports game, one may feel her/his own muscles moving in synchrony with the player''s. Such parallels between observed actions of others and one''s own has been well supported in the latest progress in neuroscience, and coined “mirror system.” It is likely that due to such phenomena, we are able to learn motor skills just by observing an expert''s performance. Yet it is unknown whether such indirect learning occurs only at higher cognitive levels, or also at basic sensorimotor levels where sensorimotor delay is compensated and the timing of sensory feedback is constantly calibrated.

Methodology/Principal Findings

Here, we show that the subject''s passive observation of an actor manipulating a computer mouse with delayed auditory feedback led to shifts in subjective simultaneity of self mouse manipulation and auditory stimulus in the observing subjects. Likewise, self adaptation to the delayed feedback modulated the simultaneity judgment of the other subjects manipulating a mouse and an auditory stimulus. Meanwhile, subjective simultaneity of a simple visual disc and the auditory stimulus (flash test) was not affected by observation of an actor nor self-adaptation.

Conclusions/Significance

The lack of shift in the flash test for both conditions indicates that the recalibration transfer is specific to the action domain, and is not due to a general sensory adaptation. This points to the involvement of a system for the temporal monitoring of actions, one that processes both one''s own actions and those of others.  相似文献   

14.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

15.

Background

The timing at which sensory input reaches the level of conscious perception is an intriguing question still awaiting an answer. It is often assumed that both visual and auditory percepts have a modality specific processing delay and their difference determines perceptual temporal offset.

Methodology/Principal Findings

Here, we show that the perception of audiovisual simultaneity can change flexibly and fluctuates over a short period of time while subjects observe a constant stimulus. We investigated the mechanisms underlying the spontaneous alternations in this audiovisual illusion and found that attention plays a crucial role. When attention was distracted from the stimulus, the perceptual transitions disappeared. When attention was directed to a visual event, the perceived timing of an auditory event was attracted towards that event.

Conclusions/Significance

This multistable display illustrates how flexible perceived timing can be, and at the same time offers a paradigm to dissociate perceptual from stimulus-driven factors in crossmodal feature binding. Our findings suggest that the perception of crossmodal synchrony depends on perceptual binding of audiovisual stimuli as a common event.  相似文献   

16.
Diverse a nimal species use multimodal communica tion signals to coordina te reproductive behavior.Despite active research in this field,the brain mechanisms underlying multimodal communication remain poorly understood.Similar to humans and many mammalian species,anurans often produce auditory signals accompanied by conspicuous visual cues(e.g.,vocal sac inflation).In this study,we used video playbacks to determine the role of vocal-sac inflation in little torrent frogs(Amolops torrentis).Then we exposed females to blank,visual,auditory,and audiovisual stimuli and analyzed whole brain tissue gene expression changes using RNAseq.The results showed that both auditory cues(i.e.,male advertisement calls)and visual cues were attractive to female frogs,although auditory cues were more attractive than visual cues.Females preferred simultaneous bimodal cues to unimodal cues.The hierarchical clustering of differentially expressed genes showed a close relationship between neurogenomic states and momentarily expressed sexual signals.We also found that the Gene Ontology terms and KEGG pathways involved in energy metabolism were mostly increased in blank contrast versus visual,acoustic,or audiovisual stimuli,indicating that brain energy use may play an important role in response to these stimuli.In sum,behavioral and neurogenomic responses to acoustic and visual cues are correlated in female little torrent frogs.  相似文献   

17.
It has traditionally been assumed that cochlear implant users de facto perform atypically in audiovisual tasks. However, a recent study that combined an auditory task with visual distractors suggests that only those cochlear implant users that are not proficient at recognizing speech sounds might show abnormal audiovisual interactions. The present study aims at reinforcing this notion by investigating the audiovisual segregation abilities of cochlear implant users in a visual task with auditory distractors. Speechreading was assessed in two groups of cochlear implant users (proficient and non-proficient at sound recognition), as well as in normal controls. A visual speech recognition task (i.e. speechreading) was administered either in silence or in combination with three types of auditory distractors: i) noise ii) reverse speech sound and iii) non-altered speech sound. Cochlear implant users proficient at speech recognition performed like normal controls in all conditions, whereas non-proficient users showed significantly different audiovisual segregation patterns in both speech conditions. These results confirm that normal-like audiovisual segregation is possible in highly skilled cochlear implant users and, consequently, that proficient and non-proficient CI users cannot be lumped into a single group. This important feature must be taken into account in further studies of audiovisual interactions in cochlear implant users.  相似文献   

18.
The simultaneity of signals from different senses—such as vision and audition—is a useful cue for determining whether those signals arose from one environmental source or from more than one. To understand better the sensory mechanisms for assessing simultaneity, we measured the discrimination thresholds for time intervals marked by auditory, visual or auditory–visual stimuli, as a function of the base interval. For all conditions, both unimodal and cross-modal, the thresholds followed a characteristic ‘dipper function’ in which the lowest thresholds occurred when discriminating against a non-zero interval. The base interval yielding the lowest threshold was roughly equal to the threshold for discriminating asynchronous from synchronous presentations. Those lowest thresholds occurred at approximately 5, 15 and 75 ms for auditory, visual and auditory–visual stimuli, respectively. Thus, the mechanisms mediating performance with cross-modal stimuli are considerably slower than the mechanisms mediating performance within a particular sense. We developed a simple model with temporal filters of different time constants and showed that the model produces discrimination functions similar to the ones we observed in humans. Both for processing within a single sense, and for processing across senses, temporal perception is affected by the properties of temporal filters, the outputs of which are used to estimate time offsets, correlations between signals, and more.  相似文献   

19.
Audiovisual integration of letters in the human brain   总被引:5,自引:0,他引:5  
Raij T  Uutela K  Hari R 《Neuron》2000,28(2):617-625
Letters of the alphabet have auditory (phonemic) and visual (graphemic) qualities. To investigate the neural representations of such audiovisual objects, we recorded neuromagnetic cortical responses to auditorily, visually, and audiovisually presented single letters. The auditory and visual brain activations first converged around 225 ms after stimulus onset and then interacted predominantly in the right temporo-occipito-parietal junction (280345 ms) and the left (380-540 ms) and right (450-535 ms) superior temporal sulci. These multisensory brain areas, playing a role in audiovisual integration of phonemes and graphemes, participate in the neural network supporting the supramodal concept of a "letter." The dynamics of these functions bring new insight into the interplay between sensory and association cortices during object recognition.  相似文献   

20.
Although infant speech perception in often studied in isolated modalities, infants'' experience with speech is largely multimodal (i.e., speech sounds they hear are accompanied by articulating faces). Across two experiments, we tested infants’ sensitivity to the relationship between the auditory and visual components of audiovisual speech in their native (English) and non-native (Spanish) language. In Experiment 1, infants’ looking times were measured during a preferential looking task in which they saw two simultaneous visual speech streams articulating a story, one in English and the other in Spanish, while they heard either the English or the Spanish version of the story. In Experiment 2, looking times from another group of infants were measured as they watched single displays of congruent and incongruent combinations of English and Spanish audio and visual speech streams. Findings demonstrated an age-related increase in looking towards the native relative to non-native visual speech stream when accompanied by the corresponding (native) auditory speech. This increase in native language preference did not appear to be driven by a difference in preference for native vs. non-native audiovisual congruence as we observed no difference in looking times at the audiovisual streams in Experiment 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号