首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.  相似文献   

2.

Background

Radiofrequency catheter ablations of anteroseptal (AS) accessory pathways (AP) in pediatric patients have higher incidence of atrioventricular (AV) block than other AP locations. We report our experience using cryoablation in pediatric patients where a His bundle electrogram was noted on the ablation catheter at the site of the successful ablation.

Methods and Results

We retrospectively reviewed all patients ≤21 years that underwent cryoablation for an AS AP from 2005 to 2012 at our institution (n=70). Patients with a His bundle electrogram noted on the cryoablation catheter at the location of the successful lesion were identified (n=6, 8.5%). All six patients had ventricular preexcitation. Median age of 15.9 years (7.2 - 18.2). AV nodal function was monitored during the cryoablation with intermittent rapid atrial pacing conducted through the AV node (n=2), with atrial extra-stimulus testing (n=2), or during orthodromic reentrant tachycardia (n=2). Acute success occurred in all patients. Two patients had early recurrence of AP conduction. Both patients underwent a second successful cryoablation, again with a His bundle electrogram on the cryoablation catheter. At a median follow-up of 13 months (3 to 37 months) there was no recurrence of accessory pathway conduction and AVN function was normal.

Conclusion

In a small number of pediatric patients with AS AP with a His bundle electrogram seen on the ablation catheter, the use of cryotherapy was safe and effective for elimination of AP conduction without impairment of AV nodal conduction.  相似文献   

3.
The electrophysiological properties of atrioventricular (AV) nodal dual pathways have traditionally been investigated with premature stimuli delivered with right atrial pacing. However, little is known about the functional characteristics of AV nodal inputs outside of this context. Superfused rabbit triangle of Koch preparations (n = 8) and Langendorff-perfused hearts (n = 10) were paced throughout the triangle of Koch and mapped electrically and optically for activation pattern, electrogram and optical action potential morphologies, stimulation thresholds, and stimulus-His (S-H) intervals. Optical mapping and changes in His electrogram morphology were used to confirm the activation pathway. Pacing stimuli >or=2 mm above the tricuspid valve caused fast-pathway activation of the AV node and His with a threshold of 2.4 +/- 1.6 mA. An area directly below the coronary sinus had high thresholds (8.6 +/- 1.4 mA) that also resulted in fast-pathway excitation (P < 0.001). S-H intervals (81 +/- 19 ms) for fast-pathway activation remained constant throughout the triangle of Koch, reflecting the AV delay. Stimuli applied <2 mm from the tricuspid valve resulted in slow pathway (SP) excitation or direct His excitation (4.4 +/- 2.2 mA threshold; P < 0.001 compared with fast pathway). For SP/His pacing, S-H intervals showed a strong dependence on the distance from the His electrode and were significantly lower than S-H intervals for fast-pathway activation. SP/His pacing also displayed characteristic changes in His electrogram morphology. In conclusion, optical maps and S-H intervals for SP/His activation suggest that AV conduction via SP bypasses the compact AV node via the lower nodal bundle, which may be utilized to achieve long-term ventricular synchronization.  相似文献   

4.
We describe a patient with an implanted pacemaker for impaired AV conduction who presented with an incessant tachycardia. EP study showed that the tachycardia was atrioventricular nodal reentrant tachycardia (AVNRT) with repeated spontaneous initiation because of poor or absent antegrade fast pathway conduction. Slow pathway ablation was successful in terminating the tachycardia and making it non-inducible.  相似文献   

5.
Niu WZ  Gao YL  Liu P  Liu BY  Ye G 《生理学报》2000,52(3):259-262
本文目的在于深入研究降钙素基因相关肽(CGRP)对豚鼠冠状血流量以及心脏传导系统各部分的作用。采用Langendorff法灌流心脏,同步记录心脏表面电图和希氏束电活动。观察应用CGRP前后的冠脉流量、自主心率、在相同心房周期下的房室结(AH)及希浦系传导时间(HV)、心脏出现3:2文氏传导及2:1房室传导阻滞所需的最长起搏周期(PCL3:2,PCL2:1)。CGRP(3-30nmol/L)可显著增  相似文献   

6.
猫冠状动脉缺血与再灌注对房室传导的影响   总被引:11,自引:0,他引:11  
Chen SL  Feng SQ 《生理学报》1999,51(3):272-278
急性下壁心肌梗塞常引起房室传导功能障碍,然而这种障碍与心肌缺血的内在联系并不很清楚,本实验在去植物性神经传出纤维的猫上进行,通过模板匹配方法从His束电图检测A,H,V波并测量两心房间期(AA),心房波与His波间期(AH),His波与心室波间期(HV)和心房波与心室波间期(AV)。结果如下:结扎右冠状动脉后,20只动物的AH间期14只出现增加(A组)6只未出现增加(B组)对B组进行快速心房起博和  相似文献   

7.
More than half a century has passed since the concept of dual atrioventricular (AV) nodal pathways physiology was conceived. Dual AV nodal pathways have been shown to be responsible for many clinical arrhythmia syndromes, most notably AV nodal reentrant tachycardia. Although there has been a considerable amount of research on this topic, the subject of dual AV nodal pathways physiology remains heavily debated and discussed. Despite advances in understanding arrhythmia mechanisms and the widespread use of invasive electrophysiologic studies, there is still disagreement on the anatomy and physiology of the AV node that is the basis of discontinuous antegrade AV conduction. The purpose of this paper is to review the concept of dual AV nodal pathways physiology and its varied electrocardiographic manifestations.  相似文献   

8.
This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided.  相似文献   

9.
Atrioventricular nodal reentrant tachycardias typically arise from the existence of variable refractoriness in fast and slow conduction pathways within the triangle of Koch, which provide input to the atrioventricular node. Standard therapy includes medical management and catheter-based ablation procedures. Robotic-assisted, minimally invasive cryosurgical modification of the atrioventricular node can provide definitive therapy for patients who fail traditional therapy. A 65-year-old man presented with a several-year history of recurrent atrioventricular nodal reentrant tachycardia. Despite medical management and attempted percutaneous ablation, the patient remained symptomatic with weekly episodes. Access was via a 4-cm right anterolateral thoracotomy and peripheral perfusion. The da Vinci S robotic system was used to manipulate the cryoprobe (CryoMaze Probe; ATS Medical, Plymouth, MN USA). A series of spot freezes (tip 60°C) were made along the boundaries of the triangle of Koch until transient complete heart block was achieved and nodal rhythm was recovered. At follow-up 3 weeks postoperatively, the patient was asymptomatic in first-degree heart block. Robotic-assisted cryosurgical atrioventricular node ablation is an effective, minimally invasive treatment for patients with atrioventricular nodal reentrant tachycardia.  相似文献   

10.

Introduction

Radio-frequency catheter ablation (RFCA) using Joule heat has two fundamental weaknesses: the limited depth of treatment and the risk of thrombus formation. In contrast, focused shock wave (SW) therapy could damage tissues at arbitrary depths without heat generation. Thus, we aimed to develop a SW catheter ablation (SWCA) system that could compensate for the weaknesses of RFCA therapy.

Methods and Results

We developed a SWCA system where the SW generated by a Q-switched Holmium: yttrium aluminum garnet (YAG) laser beam was reflected by a reflector attached to 14-Fr catheter tip and then was converged onto the focus. We examined the feasibility of our system on pigs in vivo. When applied using the epicardial approach, the SWCA caused persistent spheroidal lesions with mild superficial injury than the RFCA. The lesions were created to a depth based on the focal length (2.0 mm) [2.36 ± 0.45 (SD) mm immediately after procedure, n = 16]. When applied to the atrioventricular (AV) node using the endocardial approach, the SWCA caused junctional escape rhythms in 2 pigs and AV block in 12 pigs (complete AV block in 9) in acute phase (n = 14). Nine of the 14 pigs survived with pacemakers for the long-term study, and the AV block persisted for 12.6 ± 3.9 (SD) days in all surviving pigs. Histological examination showed AV nodal cell body atrophy in the acute phase and fibrotic lesions in the chronic phase. Importantly, no acute or chronic fatal complications were noted.

Conclusions

Our novel SWCA system could be a promising modality as a non-thermal ablation method to compensate for the weaknesses of RFCA therapy. However, further research and development will be necessary as the current prototype still exhibited the presence of micro-thrombus formation in the animal studies.  相似文献   

11.
BackgroundLeft-sided ablation, targeting left inferior AV nodal extensions, is thought to be necessary for success in a small proportion of atrioventricular nodal re-entrant tachycardia (AVNRT) ablations; however Indian data are scarce in this regard.MethodsConsecutive cases of AVNRT undergoing slow pathway ablation in a single centre over an 18-month period were retrospectively analyzed. Left-sided ablation at the posteroseptal mitral annulus was performed if right-sided ablation failed to abolish AVNRT.ResultsFrom January 2017 to June 2018, out of 215 consecutive supraventricular tachycardia (SVT) cases, 154 (71.6%) were AVNRT (47.1 ± 13.1 years, 46.1% male). Trans-septal ablation was required in 5 (3.2%) cases (mean age 48.8 ± 9.4 years; 4 female, 1 male); all with typical (slow-fast) form of AVNRT. Compared with cases needing only right-sided ablation, radiofrequency time (50.8 ± 16.9 vs. 9.9 ± 8.5 min; p = 0.005) and procedure time (166.0 ± 35.0 vs 79.6 ± 35.9 min; p = 0.004) were significantly longer for trans-septal cases, while baseline intervals and tachycardia cycle length were not significantly different. Junctional ectopy was seen in only 2 of the 5 cases during left-sided ablation, but acute success (non-inducibility) was obtained in 3 cases. There were no instances of AV block. Over mean follow-up of 12.2 ± 4.0 months, clinical recurrence of AVNRT occurred in one case, while others remained arrhythmia-free without medication.ConclusionLeft-sided ablation was required in a small proportion of AVNRT ablations. Trans-septal approach targeting the posteroseptal mitral annulus was safe and yielded good mid-term clinical success.  相似文献   

12.
Dual atrioventricular nodal nonreentrant tachycardia (DAVNNT) is a rare form of supraventricular tachycardia. In some patients, the presence of a dual pathway physiology results in two paths in the atrioventricular (AV) node with different conduction velocities. An atrial impulse arriving at the AV node may unfold and travel along these two pathways simultaneously, causing two ventricular activations. Thus, the ventricular rate will be twice the atrial rate. DAVNNT is less common than AVNRT, but its frequency may be underestimated.The ECG is crucial to suspect the diagnosis. At first glance it looks like an irregular tachycardia, but a more careful look shows a rhythmic pattern. A sinus P wave followed by two QRS complexes (narrow or wide) should raise suspicion of this arrhythmia.It is often unnoticed by the patient, and ventricular dysfunction due to tachycardiomyopathy is not uncommon. The response of DAVNNT to medication, including beta-blockers, flecainide, and amiodarone is very poor or absent, so the treatment of choice is slow pathway ablation. We report a Case of cardiomyopathy caused by this entity.  相似文献   

13.
This work develops a mathematical model for the atrioventricular (AV) node in the human heart, based on recordings of electrical activity in the atria (the upper chambers of the heart) and the ventricles (the lower chambers of the heart). Intracardiac recordings of the atrial and ventricular activities were recorded from one patient with atrial flutter and one with atrial fibrillation. During these arrhythmias, not all beats in the atria are conducted to the ventricles. Some are blocked (concealed). However, the blocked beats can affect the properties of the AV node. The activation times of the atrial events were regarded as inputs to a mathematical model of conduction in the AV node, including a representation of AV nodal concealment. The model output was compared to the recorded ventricular response to search for and identify the best possible parameter combinations of the model. Good agreement between the distribution of interbeat intervals in the model and data for durations of 5 min was achieved. A model of AV nodal behavior during atrial flutter and atrial fibrillation could potentially help to understand the relative roles of atrial input activity and intrinsic AV nodal properties in determining the ventricular response.  相似文献   

14.
We report a patient with an implantable cardioverter defibrillator (ICD) for arrhythmogenic right ventricular dysplasia (ARVD) who received inappropriate shocks for atrioventricular node reentry tachycardia (AVRNT). Patient had multiple shocks for tachycardia with EGM characteristics of very short VA interval and CL of 300 msec. An electrophysiologic (EP) study reproducibly induced typical AVNRT with similar features. The slow AV nodal pathway ablation resolved the ICD shocks. Despite increasingly sophisticated discrimination algorithms available in modern ICDs, the ability to differentiate SVT from VT can be challenging. Our patient received inappropriate shocks for AVNRT. When device interrogation alone is not conclusive, an EP study may be necessary to determine the appropriate therapeutic course.  相似文献   

15.
16.
The identification and analysis of several cationic ion channels and their associated genes have greatly improved our understanding of the molecular and cellular mechanisms of cardiac arrhythmia. Our objective in this study was to examine the involvement of anionic ion channels in cardiac arrhythmia. We used a transgenic mouse model to overexpress the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-regulated chloride channel. We used RNase protection and in situ hybridization assays to determine the level of CFTR expression, and radiotelemetry and in vivo electrophysiological study in combination with pharmacological intervention to analyse the cardiac function. Cardiac CFTR overexpression leads to stress-related sudden death in this model. In vivo intracardiac electrophysiological studies performed in anaesthetized mice showed no significant differences in baseline conduction parameters including atrial-His bundle (AH) or His bundle-ventricular (HV) conduction intervals, atrioventricular (AV) Wenckebach or 2:1 AV block cycle length and AV nodal functional refractory period. However, following isoproterenol administration, there was marked slowing of conduction parameters, including high-grade AV block in transgenic mice, with non-sustained ventricular tachycardia easily inducible using programmed stimulation or burst pacing. Our sudden death mouse model can be a valuable tool for investigation of the role of chloride channels in arrhythmogenesis and, potentially, for future evaluation of novel anti-arrhythmic therapeutic strategies and pharmacological agents.  相似文献   

17.
Catheter ablation for atrioventricular nodal re-entrant tachycardia (AVNRT) in patients with persistent left superior vena cava (PLSVC) is challenging because of anatomical abnormalities of Koch's triangle associated with the enlarged coronary sinus ostium. We present the Case of successful ablation in a patient with PLSVC using the cryoablation technique. The ablation was successfully performed without damaging the conduction system by virtue of “cryomapping” and “cryoadhesion.” Cryoablation is a safe and efficacious alternative to radiofrequency catheter ablation for the treatment of AVNRT associated with PLSVC.  相似文献   

18.
We report a 26-year-old woman with frequent episodes of palpitation and dizziness. Resting electrocardiography showed no evidence of ventricular preexcitation. During electrophysiologic study, a concealed right posteroseptal accessory pathway was detected and orthodromic atrioventricular reentrant tachycardia incorporating this pathway as a retrograde limb was reproducibly induced. After successful ablation of right posteroseptal accessory pathway, another tachycardia was induced using a concealed right posterolateral accessory pathway in tachycardia circuit. After loss of retrograde conduction of second accessory pathway with radiofrequency ablation, dual atrioventricular nodal physiology was detected and typical atrioventricular nodal reentrant tachycardia was repeatedly induced. Slow pathway ablation was done successfully. Finally sustained self-terminating atrial tachycardia was induced under isoproterenol infusion but no attempt was made for ablation. During 8-month follow-up, no recurrence of symptoms attributable to tachycardia was observed.  相似文献   

19.
To investigate whether altered function of adenosine receptors could contribute to sinus node or atrioventricular (AV) nodal dysfunction in conscious mammals, we studied transgenic (TG) mice with cardiac-specific overexpression of the A1 adenosine receptor (A1AR). A Holter ECG was recorded in seven freely moving littermate pairs of mice during normal activity, exercise (5 min of swimming), and 1 h after exercise. TG mice had lower maximal heart rates (HR) than wild-type (WT) mice (normal activity: 437 +/- 18 vs. 522 +/- 24 beats/min, P < 0.05; exercise: 650 +/- 13 vs. 765 +/- 28 beats/min, P < 0.05; 1 h after exercise: 588 +/- 18 vs. 720 +/- 12 beats/min, P < 0.05; all values are means +/- SE). Mean HR was lower during exercise (589 +/- 16 vs. 698 +/- 34 beats/min, P < 0.05) and after exercise (495 +/- 16 vs. 592 +/- 27 beats/min, P < 0.05). Minimal HR was not different between genotypes. HR variability (SD of RR intervals) was reduced by 30% (P < 0.05) in TG compared with WT mice. Pertussis toxin (n = 4 pairs, 150 microg/kg ip) reversed bradycardia after 48 h. TG mice showed first-degree AV nodal block (PQ interval: 42 +/- 2 vs. 37 +/- 2 ms, P < 0.05), which was diminished but not abolished by pertussis toxin. Isolated Langendorff-perfused TG hearts developed spontaneous atrial arrhythmias (3 of 6 TG mice vs. 0 of 9 WT mice, P < 0.05). In conclusion, A1AR regulate sinus nodal and AV nodal function in the mammalian heart in vivo. Enhanced expression of A1AR causes sinus nodal and AV nodal dysfunction and supraventricular arrhythmias.  相似文献   

20.
The sinoatrial (SA) and atrioventricular (AV) nodes are specialized centers of the heart conduction system and are composed of muscle cells with distinctive morphological and electrophysiological properties. We report here results of immunofluorescence and immunoperoxidase studies on the bovine heart showing that a large number of SA and AV nodal cells share a distinct type of myosin heavy chain (MHC) which is not found in other myocardial cells and can thus be used as a cell-type-specific marker. The antibody used in this study was raised against fetal skeletal myosin and reacted with fetal skeletal but not with adult skeletal MHCs. Both atrial and ventricular fibers, as well as fibers of the ventricular conduction tissue were unlabeled by this antibody. Specific reactivity was exclusively seen in most cells in the central portions of the SA and AV nodes and rare cells in perinodal areas. However, a number of nodal cells, particularly those located in the peripheral nodal regions, were unreactive with this antibody. The myosin composition of nodal tissues was also explored using two antibodies reacting specifically with alpha-MHC, the predominant atrial isoform, and beta-MHC, the predominant ventricular isoform. Most nodal cells were reactive for alpha-MHC and a number of them also for beta-MHC. Variation in reactivity with the two antibodies was also observed in perinodal areas: at these sites a population of large fibers reacted exclusively for beta-MHC. These findings point to the existence of muscle cell heterogeneity with respect to myosin composition both in nodal and perinodal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号