首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.  相似文献   

2.

Background

Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana.

Methods

Archived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006).

Findings

Only buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector.

Conclusions

Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife sources of infection in determining public health risks from zoonotic disease invasions.  相似文献   

3.
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.  相似文献   

4.
Brucellosis is a zoonotic disease imposing significant impacts on livestock production and public health worldwide. India is the world’s leading milk producer and Punjab is the state which produces the most cattle and buffalo milk per capita. The aim of this study was to investigate the epidemiology of bovine brucellosis to provide evidence for control of the disease in Punjab State, India. A cross-sectional study of dairy farms was conducted in humans and livestock in rural Ludhiana district using a multi-stage sampling strategy. The study suggests that brucellosis is endemic at high levels in cattle and buffalo in the study area with 15.1% of large ruminants testing seropositive and approximately a third of dairy farms having at least one animal test seropositive. In total, 9.7% of those in direct contact with livestock tested seropositive for Brucella spp. Persons that assisted with calving and/or abortion within the last year on a farm with seronegative livestock and people which did not assist with calving/abortion had 0.35 (95% CI: 0.17 to 7.1) and 0.21 (0.09 to 0.46) times the odds of testing seropositive compared to persons assisting with calving/abortion in a seropositive farm, respectively. The study demonstrated that persons in direct contact with cattle and buffalo in the study area have high risk of exposure to Brucella spp. Control of the disease in livestock is likely to result in benefits to both animal and public health sectors.  相似文献   

5.
Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.  相似文献   

6.
Infectious diseases that affect wildlife and livestock are challenging to manage and can lead to large-scale die-offs, economic losses, and threats to human health. The management of infectious diseases in wildlife and livestock is made easier with knowledge of disease risk across space and identifying stakeholders associated with high-risk landscapes. This study focuses on anthrax, caused by the bacterium Bacillus anthracis, risk to wildlife and livestock in Montana. There is a history of anthrax in Montana, but the spatial extent of disease risk and subsequent wildlife species at risk are not known. Our objective was to predict the potential geographic distribution of anthrax risk across Montana, identify wildlife species at risk and their distributions, and define stakeholders. We used an ecological niche model to predict the potential distribution of anthrax risk. We overlaid susceptible wildlife species distributions and land ownership delineations on our risk map. We found that there was an extensive region across Montana predicted as potential anthrax risk. These potentially risky landscapes overlapped the ranges of all 6 ungulate species considered in the analysis and livestock grazing allotments, and this overlap was on public and private land for all species. Our findings suggest that there is the potential for a multi-species anthrax outbreak on multiple landscapes across Montana. Our potential anthrax risk map can be used to prioritize landscapes for surveillance and for implementing livestock vaccination programs.  相似文献   

7.
Background Cryptosporidium are parasitic protozoa that infect humans, domestic animals, and wildlife globally. In the United States, cryptosporidiosis occurs in an estimated 750,000 persons annually, and is primarily caused by either of the Cryptosporidium parvum genotypes 1 and 2, exposure to which occurs through ingestion of food or water contaminated with oocytes shed from infected hosts. Although most cryptosporidiosis cases are caused by genotype 1 and are of human origin, the zoonotic sources of genotype 2, such as livestock, are increasingly recognized as important for understanding human disease patterns. Social inequality could mediate patterns of human exposure and infection by placing individuals in environments where food or water contamination and livestock contact is high or through reducing the availability of educational and sanitary resources required to avoid exposure.Conclusions/SignificanceThese results refute assertions that cryptosporidiosis in the United States is independent of social marginalization and poverty, and carry implications for targeted public health interventions for Cryptosporidium infection in resource-poor groups. Future longitudinal and multilevel studies are necessary to elucidate the complex interactions between ecological factors, social inequality, and Cryptosporidium dynamics.  相似文献   

8.
BackgroundAnthrax is an important zoonotic disease in Kenya associated with high animal and public health burden and widespread socio-economic impacts. The disease occurs in sporadic outbreaks that involve livestock, wildlife, and humans, but knowledge on factors that affect the geographic distribution of these outbreaks is limited, challenging public health intervention planning.MethodsAnthrax surveillance data reported in southern Kenya from 2011 to 2017 were modeled using a boosted regression trees (BRT) framework. An ensemble of 100 BRT experiments was developed using a variable set of 18 environmental covariates and 69 unique anthrax locations. Model performance was evaluated using AUC (area under the curve) ROC (receiver operating characteristics) curves.ResultsCattle density, rainfall of wettest month, soil clay content, soil pH, soil organic carbon, length of longest dry season, vegetation index, temperature seasonality, in order, were identified as key variables for predicting environmental suitability for anthrax in the region. BRTs performed well with a mean AUC of 0.8. Areas highly suitable for anthrax were predicted predominantly in the southwestern region around the shared Kenya-Tanzania border and a belt through the regions and highlands in central Kenya. These suitable regions extend westwards to cover large areas in western highlands and the western regions around Lake Victoria and bordering Uganda. The entire eastern and lower-eastern regions towards the coastal region were predicted to have lower suitability for anthrax.ConclusionThese modeling efforts identified areas of anthrax suitability across southern Kenya, including high and medium agricultural potential regions and wildlife parks, important for tourism and foreign exchange. These predictions are useful for policy makers in designing targeted surveillance and/or control interventions in Kenya.We thank the staff of Directorate of Veterinary Services under the Ministry of Agriculture, Livestock and Fisheries, for collecting and providing the anthrax historical occurrence data.  相似文献   

9.
Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.  相似文献   

10.
BackgroundAnthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood.Conclusions/SignificanceAnthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections.  相似文献   

11.
Over the last 20 years, Australian white ibis populations (Threskiornis molucca) have expanded into urban areas, leading to increased contact between ibis, domestic animals, and humans. This has led to concern that ibis may transmit pathogens that threaten public health or food production. Here we report results from a study of ibis viral serology and bacterial culture that indicate that ibis are hosts of zoonotic and livestock pathogens such as Salmonella spp., Newcastle disease virus, avian influenza virus, and flaviviruses in Australia. We also performed a behavioral study to measure contact rates among ibis, people, and livestock that determine the potential for disease transmission.  相似文献   

12.
Two subspecies of Trypanosoma brucei s.l. co-exist within the animal populations of Eastern Africa; T. b. brucei a parasite which only infects livestock and wildlife and T. b. rhodesiense a zoonotic parasite which infects domestic livestock, wildlife, and which in humans, results in the disease known as Human African Trypanosomiasis (HAT) or sleeping sickness. In order to assess the risk posed to humans from HAT it is necessary to identify animals harbouring potentially human infective parasites. The multiplex PCR method described here permits differentiation of human and non-human infective parasites T. b. rhodesiense and T. b. brucei based on the presence or absence of the SRA gene (specific for East African T. b. rhodesiense), inclusion of GPI-PLC as an internal control indicates whether sufficient genomic material is present for detection of a single copy T. brucei gene in the PCR reaction.  相似文献   

13.
Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.  相似文献   

14.
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.  相似文献   

15.
Increasing livestock production to meet growing demands has resulted in greater interactions at the livestock–wildlife–human interface and more opportunities for zoonotic disease spread. Zoonoses impose enormous burdens on low-income countries like Nepal, where populations are largely dependent on livestock production and access to shared grazing lands, often near protected areas, due to population pressures. Several livestock-associated zoonoses have been reported in Nepal; however, little is known regarding Nepali farmers’ knowledge of zoonoses and opportunities for disease management. We conducted a cross-sectional study to investigate Nepali farmers’ awareness of zoonoses, assess current health challenges, and evaluate disease prevention and control practices. We found that awareness of zoonotic pathogens was limited, especially in informally educated and illiterate farmers; the majority of which were women. Further, farmers’ preventive herd health, food safety, and sanitation practices were not associated with their awareness. Several farmers reported high-risk practices despite being aware of zoonotic diseases, suggesting a disconnect between the farmers’ awareness and practice. Our study highlights the need for improving Nepali farmers’ knowledge of zoonoses and disease prevention measures. Closing these awareness-practice gaps will require an improved understanding of risk and effective drivers of behavior change, alongside engagement of farmers in development of zoonotic disease prevention programs that encourage participation of both male and female farmers across all levels of education.  相似文献   

16.

The relationship between humans, wildlife and disease transmission can be complex and context-dependent, and disease dynamics may be determined by idiosyncratic species. Therefore, an outstanding question is how general is the finding that species with faster life histories are more probable hosts of zoonoses. Ecological knowledge on species, jointly with public health data, can provide relevant information on species that should be targeted for epidemiological surveillance or management. We investigated whether mammal species traits can be good indicators of zoonotic reservoir status in an intensified agricultural region of Argentina. We find support for a relationship between reservoir status and the pace of life syndrome, confirming that fast life histories can be a factor of zoonotic risk. Nonetheless, we observed that for certain zoonosis, reservoirs may display a slow pace of life, suggesting that idiosyncratic interactions can occur. We conclude that applying knowledge from the life history-disease relationship can contribute significantly to disease risk assessment. Such an approach may be especially valuable in the current context of environmental change and agricultural intensification.

  相似文献   

17.
Anthrax, caused by the spore-forming bacterium Bacillus anthracis, is a zoonosis affecting animals and humans globally. In the United States, anthrax outbreaks occur in wildlife and livestock, with frequent outbreaks in native and exotic wildlife species in Texas, livestock outbreaks in the Dakotas, and sporadic mixed outbreaks in Montana. Understanding where pathogen and host habitat selection overlap is essential for anthrax management. Resource selection and habitat use of ungulates may be sex-specific and lead to differential anthrax exposure risks across the landscape for males and females. We evaluated female elk (Cervus canadensis) resource selection in the same study areas as male elk in a previous anthrax risk study to identify risk of anthrax transmission to females and compare transmission risk between females and males. We developed a generalized linear mixed-effect model to estimate resource selection for female elk in southwest Montana during the June to August anthrax transmission risk period. We then predicted habitat selection of female and male elk across the study area and compared selection with the distribution of anthrax risk to identify spatial distributions of potential anthrax exposure for the male and female elk. Female and male elk selected different resources during the anthrax risk period, which resulted in different anthrax exposure areas for females and males. The sex-specific resource selection and habitat use could infer different areas of risk for anthrax transmission, which can improve anthrax and wildlife management and have important public health and economic implications. © 2020 The Wildlife Society.  相似文献   

18.
The bushmeat industry has been a topic of increasing importance among both conservationists and public health officials for its influence on zoonotic disease transmission and animal conservation. While the association between infectious diseases and the bushmeat trade is well established in the research community, risk perception among bushmeat hunters and traders has not been well characterized. I conducted surveys of 123 bushmeat hunters and traders in rural Sierra Leone to investigate hunting practices and awareness of zoonotic disease risk associated with the bushmeat trade. Twenty-four percent of bushmeat hunters and traders reported knowledge of disease transmission from animals to humans. Formal education did not significantly affect awareness of zoonotic disease transmission. Individuals who engaged exclusively in preparation and trading of bushmeat were more likely to accidentally cut themselves compared to those who primarily engaged in bushmeat hunting (P < 0.001). In addition, women involved in the bushmeat trade were at greater risk of exposing themselves to potential zoonotic pathogens through accidental self-cutting compared to men (P < 0.01). This study collected preliminary information on risk perception among bushmeat hunters that could guide the creation of a future public health-based education program to minimize zoonotic disease transmission risk among vulnerable communities.  相似文献   

19.
The spillover of viruses from wildlife into agricultural animals or humans has profound socioeconomic and public health impact. Vampire bats, found throughout South America, feed directly on humans and other animals and are an important reservoir for zoonotic viruses, including rabies virus. This has resulted in considerable effort in understanding both the ecology of bat‐borne viruses and the composition and associated correlates of the structure of entire virus communities in wildlife, particularly in the context of disease control interventions. In a From the Cover article in this issue of Molecular Ecology, Bergner et al. (2019) set out to reveal virus community dynamics in vampire bats by interrogating factors that affect the structure, diversity and richness of these communities. Due to the linkage of metagenomic sequence data with community ecology, this study represents an important advance in the field of virus ecology.  相似文献   

20.
Cryptosporidium is an important zoonotic parasite globally. Few studies have examined the ecology and epidemiology of this pathogen in rural tropical systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. We investigated risk factors for Cryptosporidium infection and assessed cross-species transmission potential among people, non-human primates, and domestic animals in the Gombe Ecosystem, Kigoma District, Tanzania. A cross-sectional survey was designed to determine the occurrence and risk factors for Cryptosporidium infection in humans, domestic animals and wildlife living in and around Gombe National Park. Diagnostic PCR revealed Cryptosporidium infection rates of 4.3% in humans, 16.0% in non-human primates, and 9.6% in livestock. Local streams sampled were negative. DNA sequencing uncovered a complex epidemiology for Cryptosporidium in this system, with humans, baboons and a subset of chimpanzees infected with C. hominis subtype IfA12G2; another subset of chimpanzees infected with C. suis; and all positive goats and sheep infected with C. xiaoi. For humans, residence location was associated with increased risk of infection in Mwamgongo village compared to one camp (Kasekela), and there was an increased odds for infection when living in a household with another positive person. Fecal consistency and other gastrointestinal signs did not predict Cryptosporidium infection. Despite a high degree of habitat overlap between village people and livestock, our results suggest that there are distinct Cryptosporidium transmission dynamics for humans and livestock in this system. The dominance of C. hominis subtype IfA12G2 among humans and non-human primates suggest cross-species transmission. Interestingly, a subset of chimpanzees was infected with C. suis. We hypothesize that there is cross-species transmission from bush pigs (Potaochoerus larvatus) to chimpanzees in Gombe forest, since domesticated pigs are regionally absent. Our findings demonstrate a complex nature of Cryptosporidium in sympatric primates, including humans, and stress the need for further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号