首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.  相似文献   

3.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

4.
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5′LZTS1 fragments showed significantly lower (fold change of 1.61–6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student''s t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student''s t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.  相似文献   

5.
6.
7.
8.
9.
Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5- hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.  相似文献   

10.
11.
12.
13.
14.
15.
The discovery of the Ten‐Eleven‐Translocation (TET) oxygenases that catalyze the hydroxylation of 5‐methylcytosine (5mC) to 5‐hydroxymethylcytosine (5hmC) has triggered an avalanche of studies aiming to resolve the role of 5hmC in gene regulation if any. Hitherto, TET1 is reported to bind to CpG‐island (CGI) and bivalent promoters in mouse embryonic stem cells, whereas binding at DNAseI hypersensitive sites (HS) had escaped previous analysis. Significant enrichment/accumulation of 5hmC but not 5mC can indeed be detected at bivalent promoters and at DNaseI‐HS. Surprisingly, however, 5hmC is not detected or present at very low levels at CGI promoters notwithstanding the presence of TET1. Our meta‐analysis of DNA methylation profiling points to potential issues with regard to the various methodologies that are part of the toolbox used to detect 5mC and 5hmC. Discrepancies between published studies and technical limitations prevent an unambiguous assignment of 5hmC as a ‘true’ epigenetic mark, that is, read and interpreted by other factors and/or as a transiently accumulating intermediary product of the conversion of 5mC to unmodified cytosines.  相似文献   

16.
Solid tumors are characterized by a plethora of epigenetic changes. In particular, patterns methylation of cytosines at the 5-position (5mC) in the context of CpGs are frequently altered in tumors. Recent evidence suggests that 5mC can get converted to 5-hydroxylmethylcytosine (5hmC) in an enzymatic process involving ten eleven translocation (TET) protein family members, and this process appears to be important in facilitating plasticity of cytosine methylation. Here we evaluated the global levels of 5hmC using a validated immunohistochemical staining method in a large series of clear cell renal cell carcinoma (n = 111), urothelial cell carcinoma (n = 55) and testicular germ cell tumors (n = 84) and matched adjacent benign tissues. Whereas tumor-adjacent benign tissues were mostly characterized by high levels of 5hmC, renal cell carcinoma and urothelial cell carcinoma showed dramatically reduced staining for 5hmC. 5hmC levels were low in both primary tumors and metastases of clear cell renal cell carcinoma and showed no association with disease outcomes. In normal testis, robust 5hmC staining was only observed in stroma and Sertoli cells. Seminoma showed greatly reduced 5hmC immunolabeling, whereas differentiated teratoma, embryonal and yolk sack tumors exhibited high 5hmC levels. The substantial tumor specific loss of 5hmC, particularly in clear cell renal cell carcinoma and urothelial cell carcinoma, suggests that alterations in pathways involved in establishing and maintaining 5hmC levels might be very common in cancer and could potentially be exploited for diagnosis and treatment.  相似文献   

17.
18.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

19.
20.
Although epigenetic modulation is critical for a variety of cellular activities, its role in erythropoiesis remains poorly understood. Ten-eleven translocation (TET) molecules participate in methylcytosine (5mC) hydroxylation, which results in DNA demethylation in several biological processes. In this research, the role of TETs in erythropoiesis was investigated by using the zebrafish model, where three TET homologs were identified. These homologs share conserved structural domains with their mammalian counterparts. Zebrafish TETs mediate the conversion of 5mC to hydroxymethylcytosine (5hmC) in zebrafish embryos, and the deletion of TET2 inhibits erythropoiesis by suppressing the expression of the scl, gata-1, and cmyb genes. TET2-upregulated lineage-specific genes and erythropoiesis are closely associated with the occurrence of 5hmC and demethylation in the intermediate CpG promoters (ICPs) of scl, gata-1, cmyb, which frequently occur at specific regions or CpG sites of these ICPs. Moreover, TET2 regulates the formation and differentiation of erythroid progenitors, and deletion of TET2 leads to erythrocyte dysplasia and anemia. Here, we preliminarily proved that TET2 plays an essential role in erythrocyte development by regulating lineage-specific genes via DNA oxidative demethylation. This report is anticipated to broaden current information on hematopoiesis and pathogenesis of hematopoiesis-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号