首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nagao M  Kaziro Y  Itoh H 《FEBS letters》2000,472(2-3):297-301
Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation. Galpha(i2) and Galpha(11) had no inhibitory effect on the myogenic differentiation. Galpha(12) prevented only myoblast fusion, whereas Gbetagamma inhibited both the induction of skeletal muscle-specific markers and the myotube formation. In addition, the thrombin-induced reduction of creatine kinase activity was blocked by the C-terminal peptide of beta-adrenergic receptor kinase, which is known to sequester free Gbetagamma. These results suggest that the thrombin-induced inhibition of muscle differentiation is mainly mediated by Gbetagamma.  相似文献   

3.
Oocyte meiosis is arrested at prophase I by factors secreted from surrounding somatic cells after oocytes acquire meiotic competence at an early antral stage, and meiosis resumes in preovulatory follicles as a result of the luteinizing hormone (LH) surge. Recently, signaling by C‐type natriuretic peptide (CNP) through its receptor, natriuretic peptide receptor 2 (NPR2), was found to be essential for meiotic arrest at the late antral stage. Whether or not CNP/NPR2 signaling maintains oocyte meiotic arrest in earlier follicular stages and how it is associated with meiotic resumption induced by the LH surge is unclear. In this study, we examined the expression of Nppc and Npr2, respectively encoding CNP and NPR2, in the ovaries of immature mice. Nppc and Npr2 mRNA were specifically expressed in the outer and inner granulosa cell layers, respectively, in early antral follicles. Histological analysis of mice with a mutation in Npr2 revealed precocious resumption of oocyte meiosis in early antral follicles. Ovaries of mice treated with excess human chorionic gonadotropin (hCG) exhibited markedly decreased Nppc mRNA levels in granulosa cells of preovulatory follicles. Moreover, we found that amphiregulin, a mediator of LH/hCG activity through epidermal growth factor receptor (EGFR), suppressed Nppc mRNA levels in cultured granulosa cells. These results suggest that CNP/NPR2 signaling is essential for oocyte meiotic arrest in early antral follicles and that activated LH/amphiregulin/EGFR signaling pathway suppresses this signal by downregulating Nppc expression. Mol. Reprod. Dev. 79: 795–802, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Polycystin-1 (PC1), a 4,303-amino acid integral membrane protein of unknown function, interacts with polycystin-2 (PC2), a 968-amino acid alpha-type channel subunit. Mutations in their respective genes cause autosomal dominant polycystic kidney disease. Using a novel heterologous expression system and Ca(2+) and K(+) channels as functional biosensors, we found that full-length PC1 functioned as a constitutive activator of G(i/o)-type but not G(q)-type G-proteins and modulated the activity of Ca(2+) and K(+) channels via the release of Gbetagamma subunits. PC1 lacking the N-terminal 1811 residues replicated the effects of full-length PC1. These effects were independent of regulators of G-protein signaling proteins and were lost in PC1 mutants lacking a putative G-protein binding site. Co-expression with full-length PC2, but not a C-terminal truncation mutant, abrogated the effects of PC1. Our data provide the first experimental evidence that full-length PC1 acts as an untraditional G-protein-coupled receptor, activity of which is physically regulated by PC2. Thus, our study strongly suggests that mutations in PC1 or PC2 that distort the polycystin complex would initiate abnormal G-protein signaling in autosomal dominant polycystic kidney disease.  相似文献   

5.
High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.  相似文献   

6.
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene, a widely known cancer inhibitor, could effectively suppress cancer metastasis and angiogenesis. Downregulation or loss of RECK expression frequently occurs during cancer progression. However, the mechanism underlying RECK dysregulation has not been fully elucidated. Herein, we reported for the first time that enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, could epigenetically attenuate RECK expression via catalyzing H3K27 trimethylation (H3K27me3) within the RECK promoter. Furthermore, we also proved, for the first time, the involvement of EZH2 in the inhibition of RECK by extracellular signal-related kinases (ERK)-1/2 signaling. Next, we revealed that the modulation of the enzymic activity of EZH2 resulting from posttranslational phosphorylation at the serine-21 site was responsible for the increased enrichment of H3K27me3 at the RECK promoter region by ERK1/2 signaling. Collectively, the results of our study shed more light on the mechanisms responsible for the dysregulation of RECK by the ERK1/2 pathway.  相似文献   

7.
We have previously shown that generation of sublytic C5b-9, the membrane attack complex of complement, induces oligodendrocytes to enter cell cycle and reduces apoptotic cell death in vitro. In the present study, the cellular factors involved in apoptosis of oligodendrocyte progenitor cells and oligodendrocytes, and the inhibitory effect of C5b-9 on apoptotic process were investigated. Oligodendrocyte progenitor cells identified by mAb A2B5 that were isolated from neonatal rat brains were differentiated into oligodendrocytes in serum-free defined medium. The differentiation, which occurs simultaneously with apoptotic cell death, was associated with a rapid loss of bcl-2 mRNA and increased expression of caspase-3 mRNA. Activation of caspase-3 in differentiating cells was demonstrated by the generation of 17- and 12-kDa fragments of caspase-3 proenzyme and by cleavage of poly(ADP-ribose) polymerase, a specific caspase-3 substrate. Cell death associated with differentiation was inhibited by the caspase-3 inhibitor DEVD-CHO in a dose-dependent manner. Assembly of sublytic C5b-9 resulted in inhibition of caspase-3 activation. In addition, synthesis of BCL-2 protein in oligodendrocytes was significantly increased by C5b-9. The TNF-alpha-induced apoptosis of oligodendrocytes was also inhibited by C5b-9. These results indicate that up-regulation of BCL-2 protein and inhibition of caspase-3 activation are potential mechanisms by which C5b-9 increases survival of oligodendrocyte in vitro and possibly in vivo during inflammation and immune-mediated demyelination affecting the CNS.  相似文献   

8.
Cardiac differentiation of human pluripotent stem cells may be induced under chemically defined conditions, wherein the regulation of Wnt/β‐catenin pathway is often desirable. Here, we examined the effect of trolox, a vitamin E analog, on the cardiac differentiation of human embryonic stem cells (hESCs). 6‐Hydroxy‐2,5,7,8‐tetramethylchromane‐2‐carboxylic acid (Trolox) significantly enhanced cardiac differentiation in a time‐ and dose‐dependent manner after the mesodermal differentiation of hESCs. Trolox promoted hESC cardiac differentiation through its inhibitory activity against the Wnt/β‐catenin pathway. This study demonstrates an efficient cardiac differentiation method and reveals a novel Wnt/β‐catenin regulator.  相似文献   

9.
Arl2 and Arl3, members of the Arf subfamily of small G proteins, are believed to be involved in ciliary and microtubule-dependent processes. Recently, we could identify RP2, responsible for a variant of X-linked retinitis pigmentosa, as the Arl3-specific GAP. Here, we have characterized Arl2/3 interactions. We show the formation of a ternary complex between Arl3, its cognate GAP RP2 and its retinal effector HRG4. This complex seems to be important for photoreceptor function.  相似文献   

10.
11.
12.
Pracheil T  Thornton J  Liu Z 《Genetics》2012,190(4):1325-1339
The target of rapamycin (TOR) kinase, a central regulator of eukaryotic cell growth, exists in two essential, yet distinct, TOR kinase complexes in the budding yeast Saccharomyces cerevisiae: rapamycin-sensitive TORC1 and rapamycin-insensitive TORC2. Lst8, a component of both TOR complexes, is essential for cell viability. However, it is unclear whether the essential function of Lst8 is linked to TORC1, TORC2, or both. To that end, we carried out a genetic screen to isolate lst8 deletion suppressor mutants. Here we report that mutations in SAC7 and FAR11 suppress lethality of lst8Δ and TORC2-deficient (tor2-21) mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2. More importantly, characterization of lst8Δ bypass mutants reveals a role for protein phosphatase 2A (PP2A) in the regulation of TORC2 signaling. We show that Far11, a member of the Far3-7-8-9-10-11 complex involved in pheromone-induced cell cycle arrest, interacts with Tpd3 and Pph21, conserved components of PP2A, and deletions of components of the Far3-7-8-9-10-11 complex and PP2A rescue growth defects in lst8Δ and tor2-21 mutants. In addition, loss of the regulatory B' subunit of PP2A Rts1 or Far11 restores phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. Mammalian Far11 orthologs FAM40A/B exist in a complex with PP2A known as STRIPAK, suggesting a conserved functional association of PP2A and Far11. Antagonism of TORC2 signaling by PP2A-Far11 represents a novel regulatory mechanism for controlling spatial cell growth of yeast.  相似文献   

13.
Guo W  Wu S  Wang L  Wei X  Liu X  Wang J  Lu Z  Hollingshead M  Fang B 《PloS one》2011,6(12):e28487

Background

To optimize the antitumor activity of oncrasin-1, a small molecule identified through synthetic lethality screening on isogenic K-Ras mutant tumor cells, we developed several analogues and determined their antitumor activities. Here we investigated in vitro and in vivo antitumor activity of NSC-743380 (1-[(3-chlorophenyl) methyl]-1H-indole-3-methanol, oncrasin-72), one of most potent analogues of oncrasin-1.

Methodology and Principal Findings

In vitro antitumor activity was determined in NCI-60 cancer cell line panel using cell viability assay. In vivo antitumor activity was determined in parallel with NSC-741909 (oncrasin-60) in xenograft tumors established in nude mice from A498, a human renal cancer cell line. Changes in gene expression levels and signaling pathway activities upon treatment with NSC-743380 were analyzed in breast and renal cancer cells by Western blot analysis. Apoptosis was demonstrated by Western blot analysis and flow cytometric analysis. NSC-743380 is highly active against a subset of cancer cell lines derived from human lung, colon, ovary, kidney, and breast cancers. The 50% growth-inhibitory concentration (GI50) for eight of the most sensitive cell lines was ≤10 nM. In vivo study showed that NSC-743380 has a better safety profile and greater antitumor activity than NSC-741909. Treatment with NSC-743380 caused complete regression of A498 xenograft tumors in nude mice at the tested doses ranging from 67 mg/kg to 150 mg/kg. Mechanistic characterization revealed that NSC-743380 suppressed the phosphorylation of C-terminal domain of RNA polymerase II, induced JNK activation, inhibited JAK2/STAT3 phosphorylation and suppressed cyclin D1 expression in sensitive human cancer cells. Blocking JNK activation or overexpression of constitutively active STAT3 partially blocked NSC-743380-induced antitumor activity.

Conclusions

NSC-743380 induces antitumor activity through modulation of functions in multiple cancer related pathways and could be a potential anticancer agent for some solid tumors.  相似文献   

14.
Polo-like kinase 3 (Plk3, alternatively termed Prk) is involved in the regulation of DNA damage checkpoint as well as in M-phase function. Plk3 physically interacts with p53 and phosphorylates this tumor suppressor protein on serine-20, suggesting that the role of Plk3 in cell cycle progression is mediated, at least in part, through direct regulation of p53. Here we show that Plk3 is rapidly activated by reactive oxygen species in normal diploid fibroblast cells (WI-38), correlating with a subsequent increase in p53 protein level. Plk3 physically interacts with Chk2 and the interaction is enhanced upon DNA damage. In addition, Chk2 immunoprecipitated from cell lysates of Daudi (which expressed little Plk3) is capable of stimulating the kinase activity of purified recombinant Plk3 in vitro, and this stimulation is more pronounced when Plk3 is supplemented with Chk2 immunoprecipitated from Daudi after DNA damage. Furthermore, ectopic expression Chk2 activates cellular Plk3. Together, our studies suggest Chk2 may mediate direct activation of Plk3 in response to genotoxic stresses.  相似文献   

15.
Binding of macrophage colony stimulating factor (M-CSF) to its receptor (Fms) induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins that relay growth and development signals. To determine whether a distinct signaling pathway is responsible for the Fms differentiation signal versus the growth signal, we sought new molecules involved in Fms signaling by performing a two-hybrid screen in yeast using the autophosphorylated cytoplasmic domain of the wild-type Fms receptor as bait. Clones containing SH2 domains of phospholipase C-gamma2 (PLC-gamma2) were frequently isolated and shown to interact with phosphorylated Tyr721 of the Fms receptor, which is also the binding site of the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase). At variance with previous reports, M-CSF induced rapid and transient tyrosine phosphorylation of PLC-gamma2 in myeloid FDC-P1 cells and this activation required the activity of the PI3-kinase pathway. The Fms Y721F mutation strongly decreased this activation. Moreover, the Fms Y807F mutation decreased both binding and phosphorylation of PLC-gamma2 but not that of p85. Since the Fms Y807F mutation abrogates the differentiation signal when expressed in FDC-P1 cells and since this phenotype could be reproduced by a specific inhibitor of PLC-gamma, we propose that a balance between the activities of PLC-gamma2 and PI3-kinase in response to M-CSF is required for cell differentiation.  相似文献   

16.
Activated macrophages are critical cellular participants in inflammatory disease states. Transforming growth factor (TGF)-beta1 is a growth factor with pleiotropic effects including inhibition of immune cell activation. Although the pathway of gene activation by TGF-beta1 via Smad proteins has recently been elucidated, suppression of gene expression by TGF-beta1 remains poorly understood. We found that of Smad1-Smad7, Smad3 alone was able to inhibit expression of markers of macrophage activation (inducible nitric-oxide synthase and matrix metalloproteinase-12) following lipopolysaccharide treatment in gene reporter assays. Transient and constitutive overexpression of a dominant negative Smad3 opposed the inhibitory effect of TGF-beta1. Domain swapping experiments suggest that both the Smad MH-1 and MH-2 domains are required for inhibition. Mutation of a critical amino acid residue required for DNA binding in the MH-1 of Smad3 (R74A) resulted in the loss of inhibition. Transient overexpression of p300, an interactor of the Smad MH-2 domain, partially alleviated the inhibition by TGF-beta1/Smad3, suggesting that inhibition of gene expression may be due to increased competition for limiting amounts of this coactivator. Our results have implications for the understanding of gene suppression by TGF-beta1 and for the regulation of activated macrophages by TGF-beta1.  相似文献   

17.
We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.  相似文献   

18.
K-Ras mutations are frequent in colorectal cancer (CRC), albeit K-Ras is the only Ras isoform that can elicit apoptosis. Here, we show that mutant K-Ras directly binds to the tumor suppressor RASSF1A to activate the apoptotic MST2-LATS1 pathway. In this pathway LATS1 binds to and sequesters the ubiquitin ligase Mdm2 causing stabilization of the tumor suppressor p53 and apoptosis. However, mutant Ras also stimulates autocrine activation of the EGF receptor (EGFR) which counteracts mutant K-Ras-induced apoptosis. Interestingly, this protection requires the wild-type K-Ras allele, which inhibits the MST2 pathway in part via AKT activation. Confirming the pathophysiological relevance of the molecular findings, we find a negative correlation between K-Ras mutation and MST2 expression in human CRC patients and CRC mouse models. The small number of tumors with co-expression of mutant K-Ras and MST2 has elevated apoptosis rates. Thus, in CRC, mutant K-Ras transformation is supported by the wild-type allele.  相似文献   

19.
20.
The related adhesion focal tyrosine kinase (RAFTK), also known as Pyk2, undergoes autophosphorylation upon its stimulation. This leads to cascades of intracellular signaling that result in the regulation of various cellular activities. However, the molecular mechanism of RAFTK autophosphorylation is not yet known. Using various RAFTK constructs fused with two different tags, we found that the autophosphorylation of RAFTK was mediated by a trans-acting mechanism, not a cis-acting mechanism. In addition, overexpression of kinase-mutated RAFTK inhibited wild type RAFTK autophosphorylation in a dose-dependent manner by a trans-acting interaction. Trans-acting autophosphorylation was also observed between endogenous and exogenous RAFTK upon potassium depolarization of neuroendocrine PC12 cells. Using immunoprecipitation and affinity chromatography, we detected RAFTK self-association that was not affected by deletion of a single region or domain of RAFTK. Furthermore, RAFTK autophosphorylation occurred only at site Tyr402 in a Src kinase activity-independent manner. However, Src significantly enhanced RAFTK-mediated paxillin phosphorylation, suggesting a key role for Src in RAFTK activation and phosphorylation of downstream substrates. Our results indicate that the activation of RAFTK occurs in several steps. First, upon stimulus, RAFTK trans-autophosphorylates Tyr402. Second, phosphorylated Tyr402 recruits and activates Src kinase that in turn phosphorylates RAFTK and enhances its kinase activity. Lastly, the enhanced RAFTK activity induces the activation of downstream signaling molecules. Taken together, these studies provide insights into the molecular mechanism of RAFTK autophosphorylation and the specific role of Src in the regulation of RAFTK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号