首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of global and local stressors is leading to a decline in coral reef health globally. In the case of eutrophication, increased concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are largely attributed to local land use changes. From the global perspective, increased atmospheric CO2 levels are not only contributing to global warming but also ocean acidification (OA). Both eutrophication and OA have serious implications for calcium carbonate production and dissolution among calcifying organisms. In particular, benthic foraminifera precipitate the most soluble form of mineral calcium carbonate (high‐Mg calcite), potentially making them more sensitive to dissolution. In this study, a manipulative orthogonal two‐factor experiment was conducted to test the effects of dissolved inorganic nutrients and OA on the growth, respiration and photophysiology of the large photosymbiont‐bearing benthic foraminifer, Marginopora rossi. This study found the growth rate of M. rossi was inhibited by the interaction of eutrophication and acidification. The relationship between M. rossi and its photosymbionts became destabilized due to the photosymbiont's release from nutrient limitation in the nitrate‐enriched treatment, as shown by an increase in zooxanthellae cells per host surface area. Foraminifers from the OA treatments had an increased amount of Chl a per cell, suggesting a greater potential to harvest light energy, however, there was no net benefit to the foraminifer growth. Overall, this study demonstrates that the impacts of OA and eutrophication are dose dependent and interactive. This research indicates an OA threshold at pH 7.6, alone or in combination with eutrophication, will lead to a decline in M. rossi calcification. The decline in foraminifera calcification associated with pollution and OA will have broad ecological implications across their ubiquitous range and suggests that without mitigation it could have serious implications for the future of coral reefs.  相似文献   

2.
Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5–11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificum, Amphidinium carterae, Effrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7–10) and F. kawagutii the second (8–10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.  相似文献   

3.
4.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

5.
Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.  相似文献   

6.
王春忠  陈晓  郑建峰 《生态科学》2011,30(6):581-585
根据2007年3月至12月福建省兴化湾海域的水质监测结果,重点分析了该海域溶解无机氮(DIN)、溶解无机磷(DIP)的分布特征及其影响因素,并采用有机污染指数和富营养化指数对兴化湾海域的富营化水平进行了评价。结果表明:兴化湾海域富营养化主要污染物是DIN、DIP,其含量主要受径流排放和海洋浮游植物生长等因素的影响。春夏季节浮游植物生长繁殖旺盛,但雨水增多,最终导致了DIP、DIN含量的升高。秋季水温下降,浮游植物生长繁殖逐渐减弱,DIP、DIN的含量也逐渐升高。兴化湾富营养化水平加重,2007年的富营养化指数是2000年的5.7倍,主要体现在DIN、DIP等指标的升高。  相似文献   

7.
8.
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.  相似文献   

9.
Coastal eutrophication is a growing problem worldwide, leading to increased epiphyte overgrowth of seagrass leaves. Yet little is known about how epiphytes affect key biogeochemical conditions and processes in the seagrass phyllosphere. We used electrochemical microsensors to measure microgradients of O2, pH, and CO2 at the bare and epiphyte-covered leaf surface of seagrass (Zostera marina L.) to determine effects of epiphytes on the leaf chemical microenvironment. Epiphytes result in extreme daily fluctuations in pH, O2, and inorganic carbon concentrations at the seagrass leaf surface severely hampering the plant's performance. In light, leaf epiphyte biofilms and their diffusive boundary layer lead to strong basification, markedly reducing the CO2 and HCO3- availability at the leaf surface, leading to reduced photosynthetic efficiency as a result of carbon limitation and enhanced photorespiration. With epiphytes, leaf surface pH increased to >10, thereby exceeding final pH levels (~9.62) and CO2 compensation points for active photosynthesis. In darkness, epiphyte biofilms resulted in increased CO2 and hypoxia at the leaf surface. Epiphytes can lead to severe carbon limitation in seagrasses owing to strong phyllosphere basification leading to CO2 depletion and costly, yet limiting, HCO3- utilization, increasing the risk of plant starvation.  相似文献   

10.
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.  相似文献   

11.
To demonstrate the sensitivity of aquatic ecosystems to forecasted increases in nitrogen deposition along the eastern ranges of the Canadian Rocky Mountains, we conducted midsummer limnological surveys of 29 remote alpine lakes and ponds via helicopter in 2007. Chemical analysis of water and in vitro nitrogen-enrichment bioassays of phytoplankton collected from each site were performed to estimate nutrient limitation. Use of a common chemical index for nutrient limitation (total dissolved inorganic nitrogen: total phosphorus; DIN:TP) together with supportive experimental evidence revealed nitrogen limitation in only 14% of the cases. Shallow (≤1 m maximum depth) ponds were more likely to be nitrogen-limited than lakes, especially as the former exhibited a significantly lower mean DIN:TP ratio of 7.4 during the late summer. Chemical and bioassay-based inferences of nitrogen limitation agreed in 74.5% of the cases, owing mainly to evidence of phosphorus limitation of the surveyed lake ecosystems (mean DIN:TP = 18) being supported by nonsignificant responses of their phytoplankton to nitrogen amendment. Our findings reveal that increased nitrogen deposition should not result in immediate widespread eutrophication of the Canadian Rockies; however, certain alpine ponds appeared nitrogen-limited, making them sensitive early indicators of the potential effects of anthropogenic nitrogen deposition in remote mountainous regions.  相似文献   

12.
As a result of a low pH, the inorganic carbon of acidic lakes is present as CO2 at air-equilibrium concentration and is substantially lower than the inorganic carbon concentration in higher-pH waters with bicarbonate. This situation is quite common in artificially acidified lakes and where inorganic carbon is considered the limiting factor in phytoplankton growth. Apart from low inorganic carbon content, Lake Caviahue in Argentina has low nitrogen and high phosphorus content. The aim of this work was to assess the importance of inorganic carbon, phosphorus, and nitrogen, relating data on lake nutrients to phytoplankton species requirements. Lake samples taken in the 2004–2006 period did not show any particular trend in the vertical distribution of the water column of ammonium, inorganic carbon, and phosphorus with reference to either seasonality or depth. A decrease of some 15% in the lake’s phosphorus concentration was observed over the same period. Although the total phytoplankton biomass in Lake Caviahue was similar throughout the period, a seasonal variation was observed. Lab bioassays were carried out with solutions of bicarbonates, ammonium, nitrates, and phosphate. We worked with three species separately, namely, two chlorophytes, Keratococcus rhaphidioides and Watanabea sp.; and one euglenophyte, Euglena mutabilis. Answers to specific nutrient requirements differed for each algal species: both chlorophytes prefer ammonium or nitrates added on their own, whereas the euglenophyte registered a higher growth rate with the joint addition of ammonium and phosphorus. Even when the limiting nutrient(s) for phytoplankton yield and rate varied between species, we observed a tendency for nitrogen limitation in Lake Caviahue.  相似文献   

13.
14.
15.
Although rising CO2 concentrations are thought to promote the growth and alter the carbon : nutrient stoichiometry of primary producers, several studies have reported conflicting results. To reconcile these contrasting results, we tested the following hypotheses: rising CO2 levels (1) will increase phytoplankton biomass more at high nutrient loads than at low nutrient loads, but (2) will increase their carbon : nutrient stoichiometry more at low than at high nutrient loads. We formulated a mathematical model to predict dynamic changes in phytoplankton population density, elemental stoichiometry and inorganic carbon chemistry in response to rising CO2. The model was tested in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa. The model predictions and experimental results confirmed the hypotheses. Our findings provide a novel theoretical framework to understand and predict effects of rising CO2 concentrations on primary producers and their nutritional quality as food for herbivores under different nutrient conditions.  相似文献   

16.
Rising carbon dioxide (CO2) concentrations in the atmosphere result in increasing global temperatures and ocean warming (OW). Concomitantly, dissolution of anthropogenic CO2 declines seawater pH, resulting in ocean acidification (OA) and altering marine chemical environments. The marine biological carbon pump driven by marine photosynthesis plays an important role for oceanic carbon sinks. Therefore, how ocean climate changes affect the amount of carbon fixation by primary producers is closely related to future ocean carbon uptake. OA may upregulate metabolic pathways in phytoplankton, such as upregulating ß-oxidation and the tricarboxylic acid cycle, resulting in increased accumulation of toxic phenolic compounds. Ocean warming decreases global phytoplankton productivity; however, regionally, it may stimulate primary productivity and change phytoplankton community composition, due to different physical and chemical environmental requirements of species. It is still controversial how OA and OW interactively affect marine carbon fixation by photosynthetic organisms. OA impairs the process of calcification in calcifying phytoplankton and aggravate ultraviolet (UV)-induced harms to the cells. Increasing temperatures enhance the activity of cellular repair mechanisms, which mitigates UV-induced damage. The effects of OA, warming, enhanced exposure to UV-B as well as the interactions of these environmental stress factors on phytoplankton productivity and community composition, are discussed in this review.  相似文献   

17.
An in vitro nutrient addition bioassay was performed to testthe relative inorganic nitrogen (N) and phosphorus (P) limitationof phytoplankton in a Spanish karst lake (El Tejo) during thelast part of the stratification period, when nutrient limitationis most pronounced. Nutrient deficiency was tested in samplesfrom three different layers of the lake: the epilimnion, metalimnionand oxic hypolimnion. Nitrogen additions, either without orcombined with P, increased phytoplankton growth in all threestrata, compared with controls or P treatments. This showedthat N was the nutrient limiting phytoplankton growth in latesummer–early fall. Since both hypolimnetic diffusion andgroundwater fluxes of N-rich waters into the lake are much reducedduring summer, N becomes the limiting nutrient as stratificationadvances. We suggest that in this Mediterranean area with lowatmospheric deposition of anthropogenic N and in lakes relativelyfree of surface run-off, nutrient supply by atmospheric depositionmight be a key factor in controlling nutrient deficiency forphytoplankton growth.  相似文献   

18.
Abstract. Photosynthesis by many marine phytoplankton algae is saturated by the inorganic C concentration in air-equilibrated sea water. These organisms appear to use an active inorganic C transport process (CO2-concentrating mechanism) which increases the CO2 concentration around rubisco and saturates this enzyme with CO2 and suppresses its oxygenase activity. A minority of marine phytoplankton algae have photosynthetic characteristics more suggestive of diffusive CO2 entry; the inorganic C concentration present in sea water does not saturate photosynthesis by these organisms. Theoretical considerations, tested when possible against observation, suggest that the organisms with a CO2-concentrating mechanism could have a lower cost of photons, nitrogen, iron, manganese and molybdenum to achieve a given rate of carbon accumulation by the cells than is the case for the organisms with diffusive CO2 entry. Zinc and selenium costs may show the reverse effect. The increased sea-surface inorganic C, and CO2 concentrations which will result from anthropogenic increases in atmospheric CO2 content are predicted to increase the rate of photosynthesis, and of growth when other resources are abundant, and to reduce, or reverse, the higher resource (photons, nitrogen, iron, manganese and molybdenum) cost of a given rate of CO2 assimilation in organisms with CO2 diffusion relative to those which have CO2 concentrating mechanisms and do not repress them at higher inorganic C concentrations. These effects may well alter species composition, and overall resource cost of growth, of phytoplankton; any influence that these effects may have on CO2 removal from the atmosphere are severely constrained by other trophic levels and, especially, oceanic circulation patterns. Changed sea-surface temperatures are unlikely to qualitatively alter these conclusions.  相似文献   

19.
A whole-ecosystem experiment in Lake 227 (L227) at the Experimental Lakes Area, ongoing since 1969, examined the roles of carbon (C), nitrogen (N), and phosphorus (P) in controlling eutrophication. During 2011, we conducted a series of sub-experiments and more intensive monitoring to improve estimates of N fixation and its ability to meet algal growth demands in the decades following the cessation of artificial N loading, while maintaining long-term high artificial P loading. Stoichiometric nutrient ratios indicated both moderate N and P limitation of the phytoplankton during spring, preceding a shift in phytoplankton community structure toward dominance by N fixing cyanobacteria. During bloom development, and for the remainder of the stratified period, stoichiometric nutrient ratios indicated moderate to strong P limitation. N fixation rates, corrected using 15N2 methods, increased 2× after 1990, when N loading ceased. Ambient dissolved inorganic nitrogen prior to the bloom represented less than 3% of N demands of the phytoplankton. N fixation accounted for between 69–86% of total N loading to the epilimnion during the period of rapid bloom development, and 72–86% of total N loading during the May–October period. Phytoplankton biomass did not decline in L227 during the 40 years since artificial N loading was reduced, or the nearly 25 years since artificial N loads ceased entirely (1990–2013), and remained approximately 20× higher than four nearby reference lakes. These results suggest that despite constraints on biological N fixation, it retains a large capacity to offset potential N loading reductions in freshwaters.  相似文献   

20.
Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号