共查询到20条相似文献,搜索用时 0 毫秒
1.
Lukasz Skora Luis Fonseca-Ornelas Romina V. Hofele Dietmar Riedel Karin Giller Jens Watzlawik Walter J. Schulz-Schaeffer Henning Urlaub Stefan Becker Markus Zweckstetter 《The Journal of biological chemistry》2013,288(5):2994-3002
Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease. 相似文献
2.
Chauhan Ved P. S. Ray Indrani Chauhan Abha Wegiel Jerzy Wisniewski Henryk M. 《Neurochemical research》1997,22(7):805-809
Amyloid beta-protein (A) is the major constituent of amyloid fibrils composing -amyloid plaques and cerebrovascular amyloid in Alzheimer's disease (AD). We studied the effect of metal cations on preformed fibrils of synthetic A by Thioflavin T (ThT) fluorescence spectroscopy and electronmicroscopy (EM) in negative staining. The amount of cross beta-pleated sheet structure of A 1–40 fibrils was found to decrease by metal cations in a concentration-dependent manner as measured by ThT fluorescence spectroscopy. The order of defibrillization of A 1–40 fibrils by metal cations was: Ca2+ and Zn2+ (IC50 = 100 M) > Mg2+ (IC50 = 300 M) > Al3+ (IC50 =1.1 mM). EM analysis in negative staining showed that A 1–40 fibrils in the absence of cations were organized in a fine network with a little or no amorphous material. The addition of Ca2+, Mg2+, and Zn2+ to preformed A 1–40 fibrils defibrillized the fibrils or converted them into short rods or to amorphous material. Al3+ was less effective, and reduced the fibril network by about 80 % of that in the absence of any metal cation. Studies with A 1–42 showed that this peptide forms more dense network of fibrils as compared to A 1–40. Both ThT fluorescence spectroscopy and EM showed that similar to A 1–40, A 1–42 fibrils are also defibrillized in the presence of millimolar concentrations of Ca2+. These studies suggest that metal cations can defibrillize the fibrils of synthetic A. 相似文献
3.
Amyloid fibrils are associated with many maladies, including Alzheimer’s disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ1–40 amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ1–40 amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ1–40 amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids. 相似文献
4.
5.
Reeba S. Jacob Edna George Pradeep K. Singh Shimul Salot Arunagiri Anoop Narendra Nath Jha Shamik Sen Samir K. Maji 《The Journal of biological chemistry》2016,291(10):5278-5298
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. 相似文献
6.
Maria F. Mossuto Glyn Devlin Janet R. Kumita Mireille Dumoulin Christopher M. Dobson Xavier Salvatella 《Journal of molecular biology》2010,402(5):783-796
Identifying the cause of the cytotoxicity of species populated during amyloid formation is crucial to understand the molecular basis of protein deposition diseases. We have examined different types of aggregates formed by lysozyme, a protein found as fibrillar deposits in patients with familial systemic amyloidosis, by infrared spectroscopy, transmission electron microscopy, and depolymerization experiments, and analyzed how they affect cell viability. We have characterized two types of human lysozyme amyloid structures formed in vitro that differ in morphology, molecular structure, stability, and size of the cross-β core. Of particular interest is that the fibrils with a smaller core generate a significant cytotoxic effect. These findings indicate that protein aggregation can give rise to species with different degree of cytotoxicity due to intrinsic differences in their physicochemical properties. 相似文献
7.
Dimo Kashchiev 《Biophysical journal》2015,109(10):2126-2136
The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. 相似文献
8.
9.
Alexandra E. Porter Tuomas P.J. Knowles Sarah Meehan Jeremy Skepper Christopher M. Dobson 《Journal of molecular biology》2009,392(4):868-871
The process of aggregation leading to amyloid formation by peptides and proteins is associated with diseases ranging from systemic amyloidoses to neurodegenerative disorders such as Alzheimer's disease. A key question in understanding the link between amyloid formation and its pathological consequences is the ultrastructural localisation and morphological form of amyloid species within the cellular environment. The acquisition of such information has proven to be challenging, but we report here a novel approach that enables amyloid fibrils to be visualised directly within a cell. First, fibrils are assembled from selenium analogues of the sulfur-containing cysteine peptides, and then, atomic number contrast transmission electron microscopy is used to detect the selenium doped species selectively within the carbon-rich background of the cell. We demonstrate the power of this approach by imaging human monocyte-derived macrophage cells that have been exposed to fibrils from an amyloidogenic fragment of the disease-associated protein transthyretin. The ready incorporation of seleno-cysteine and methionine instead of their natural sulfur-containing analogues, a feature that is already commonly used in X-ray diffraction studies of proteins, suggests that this method can be used as a general strategy to image specific peptides and proteins within the cellular environment using electron microscopy. 相似文献
10.
Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive 总被引:1,自引:0,他引:1
Anika S. Mostaert Michael J. Higgins Takeshi Fukuma Fabio Rindi Suzanne P. Jarvis 《Journal of biological physics》2006,32(5):393-401
Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated β-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives. 相似文献
11.
Manola Moretti Remo Proietti Zaccaria Emiliano Descrovi Gobind Das Marco Leoncini Carlo Liberale Francesco De Angelis Enzo Di Fabrizio 《Plasmonics (Norwell, Mass.)》2013,8(1):25-33
Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolution. 相似文献
12.
Helen P. McWilliams-Koeppen James S. Foster Nicole Hackenbrack Marina Ramirez-Alvarado Dallas Donohoe Angela Williams Sallie Macy Craig Wooliver Dale Wortham Jennifer Morrell-Falvey Carmen M. Foster Stephen J. Kennel Jonathan S. Wall 《PloS one》2015,10(9)
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils. 相似文献
13.
Yuhei Tokunaga Yukako Sakakibara Yoshiki Kamada Kei-ichi Watanabe Yasushi Sugimoto 《International journal of biological sciences》2013,9(2):219-227
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme. 相似文献
14.
Jonathan S. Wall Stephen J. Kennel Angela Williams Tina Richey Alan Stuckey Ying Huang Sallie Macy Robert Donnell Robin Barbour Peter Seubert Dale Schenk 《PloS one》2012,7(12)
The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA) containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL) amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a KD of ∼10 nM. Binding was inhibited in the presence of the –Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas) as evidenced by single photon emission (SPECT) imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis. 相似文献
15.
《朊病毒》2013,7(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7-10 nm are being observed. In spite of the great clinical important of amyloid-associated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β-breakage methods, is their use for the development of novel classes of amyloid formation inhibitors. 相似文献
16.
Ehud Gazit 《朊病毒》2007,1(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7–10 nm are being observed. In spite of the great clinical important of amyloidassociated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.Key Words: Alzheimer''s disease, amyloid disease, molecular recognition, nanostructures, protein aggregation, protein misfolding, self-assembly, type II diabetes 相似文献
17.
Rick K. Huang Ulrich Baxa Gudrun Aldrian Abdullah B. Ahmed Joseph S. Wall Naoko Mizuno Oleg Antzutkin Alasdair C. Steven Andrey V. Kajava 《Biophysical journal》2014
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. 相似文献
18.
Rick?K. Huang Ulrich Baxa Gudrun Aldrian Abdullah?B. Ahmed Joseph?S. Wall Naoko Mizuno Oleg Antzutkin Alasdair?C. Steven Andrey?V. Kajava 《Biophysical journal》2014,106(10):2134-2142
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. 相似文献
19.
Susanne Wegmann Yu Jin Jung Subashchandrabose Chinnathambi Eva-Maria Mandelkow Eckhard Mandelkow Daniel J. Muller 《The Journal of biological chemistry》2010,285(35):27302-27313
Fibrous aggregates of Tau protein are characteristic features of Alzheimer disease. We applied high resolution atomic force and EM microscopy to study fibrils assembled from different human Tau isoforms and domains. All fibrils reveal structural polymorphism; the “thin twisted” and “thin smooth” fibrils resemble flat ribbons (cross-section ∼10 × 15 nm) with diverse twist periodicities. “Thick fibrils” show periodicities of ∼65–70 nm and thicknesses of ∼9–18 nm such as routinely reported for “paired helical filaments” but structurally resemble heavily twisted ribbons. Therefore, thin and thick fibrils assembled from different human Tau isoforms challenge current structural models of paired helical filaments. Furthermore, all Tau fibrils reveal axial subperiodicities of ∼17–19 nm and, upon exposure to mechanical stress or hydrophobic surfaces, disassemble into uniform fragments that remain connected by thin thread-like structures (∼2 nm). This hydrophobically induced disassembly is inhibited at enhanced electrolyte concentrations, indicating that the fragments resemble structural building blocks and the fibril integrity depends largely on hydrophobic and electrostatic interactions. Because full-length Tau and repeat domain constructs assemble into fibrils of similar thickness, the “fuzzy coat” of Tau protein termini surrounding the fibril axis is nearly invisible for atomic force microscopy and EM, presumably because of its high flexibility. 相似文献
20.
Kym Eden Ryan Morris Jay Gillam Cait?E. MacPhee Rosalind?J. Allen 《Biophysical journal》2015,108(3):632-643
Kinetic measurements of the self-assembly of proteins into amyloid fibrils are often used to make inferences about molecular mechanisms. In particular, the lag time—the quiescent period before aggregates are detected—is often found to scale with the protein concentration as a power law, whose exponent has been used to infer the presence or absence of autocatalytic growth processes such as fibril fragmentation. Here we show that experimental data for lag time versus protein concentration can show signs of kinks: clear changes in scaling exponent, indicating changes in the dominant molecular mechanism determining the lag time. Classical models for the kinetics of fibril assembly suggest that at least two mechanisms are at play during the lag time: primary nucleation and autocatalytic growth. Using computer simulations and theoretical calculations, we investigate whether the competition between these two processes can account for the kinks which we observe in our and others’ experimental data. We derive theoretical conditions for the crossover between nucleation-dominated and growth-dominated regimes, and analyze their dependence on system volume and autocatalysis mechanism. Comparing these predictions to the data, we find that the experimentally observed kinks cannot be explained by a simple crossover between nucleation-dominated and autocatalytic growth regimes. Our results show that existing kinetic models fail to explain detailed features of lag time versus concentration curves, suggesting that new mechanistic understanding is needed. More broadly, our work demonstrates that care is needed in interpreting lag-time scaling exponents from protein assembly data. 相似文献