首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The internalization and distribution of fluorescent analogs of phosphatidylcholine (M-C6-NBD-PC) and phosphatidylethanolamine (M-C6-NBD-PE) were studied in Saccharomyces cerevisiae. At normal growth temperatures, M-C6-NBD-PC was internalized predominantly to the vacuole and degraded. M-C6-NBD-PE was internalized to the nuclear envelope/ER and mitochondria, was not transported to the vacuole, and was not degraded. At 2 degrees C, both were internalized to the nuclear envelope/ER and mitochondria by an energy-dependent, N-ethylmaleimide-sensitive process, and transport of M-C6-NBD-PC to and degradation in the vacuole was blocked. Internalization of neither phospholipid was reduced in the endocytosis-defective mutant, end4-1. However, following pre-incubation at 37 degrees C, internalization of both phospholipids was inhibited at 2 degrees C and 37 degrees C in sec mutants defective in vesicular traffic. The sec18/NSF mutation was unique among the sec mutations in further blocking M-C6-NBD-PC translocation to the vacuole suggesting a dependence on membrane fusion. Based on these and previous observations, we propose that M-C6-NBD-PC and M-C6-NBD-PE are transported across the plasma membrane to the cytosolic leaflet by a protein-mediated, energy-dependent mechanism. From the cytosolic leaflet, both phospholipids are spontaneously distributed to the nuclear envelope/ER and mitochondria. Subsequently, M-C6-NBD-PC, but not M-C6-NBD-PE, is sorted by vesicular transport to the vacuole where it is degraded by lumenal hydrolases.  相似文献   

2.
The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.  相似文献   

3.
SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membranes and indicate that overproduction of SEC14p markedly reduces the apparent rate of phosphatidylcholine biosynthesis via the CDP-choline pathway in vivo. We suggest that SEC14p serves as a sensor of Golgi membrane phospholipid composition through which the activity of the CDP-choline pathway in Golgi membranes is regulated such that a phosphatidylcholine content that is compatible with the essential secretory function of these membranes is maintained.  相似文献   

4.
ABSTRACT: BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.  相似文献   

5.
The green fluorescent protein (GFP) was used as a marker to study the intracellular transport of vacuolar and secretory proteins in yeast. Therefore, the following gene constructs were expressed in Saccharomyces cerevisiae under control of the GAL1 promoter: GFP N-terminally fused to the yeast secretory invertase (INV-GFP), the plant vacuolar chitinase (CHN-GFP) and its secretory derivative (CHNDeltaVTP-GFP), which did not contain the vacuolar targeting peptide (VTP), both chitinase forms (CHN and CHNDeltaVTP), GFP without any targeting information and two secretory GFP variants with and without the VTP of chitinase (N-GFP-V and N-GFP). Whereas chitinase without VTP is accumulated in the culture medium the other gene products are retained inside the cell up to 48 h of induction. Independently of a known VTP they are transported to the vacuole, so far as they contain a signal peptide for entering the endoplasmic reticulum. This was demonstrated by confocal laser scanning microscopy, immunocytochemical analysis and subcellular fractionation experiments as well. The transport of the GFP fusion proteins is temporary delayed by a transient accumulation in electron-dense structures very likely derived from the ER, because they also contain the ER chaperone Kar2p/Bip. Our results demonstrate that GFP directs secretory proteins without VTP to the yeast vacuole, possibly by the recognition of an unknown vacuolar signal and demonstrates, therefore, a first limitation for the application of GFP as a marker for the secretory pathway in yeast.  相似文献   

6.
The use of yeast mutants to study the function and dynamics of clathrin-coated membranes has offered new insights into clathrin's role in the secretory pathway and has raised additional questions. Most strains of yeast can incur a disruption of clathrin heavy or light chain genes and remain viable. However, in rare cases, alleles of genes other than clathrin affect the viability of clathrin-deficient cells. The relationship of the products of these genes to clathrin awaits clarification. Phenotypic characterization of clathrin-deficient yeast mutants suggests that clathrin is not essential for the generation of secretory pathway transport vesicles at the ER or the Golgi complex but is required for the intracellular retention of a Golgi membrane protein, Kex2p. With this genetic evidence for clathrin's function in vivo, biochemical and genetic experiments can be designed to address the mechanism by which clathrin effects retention of Kex2p. Clathrin-deficient yeast carry out protein secretion, receptor-mediated endocytosis of mating pheromone, and efficient targeting of newly synthesized vacuolar proteins. These observations challenge aspects of clathrin's proposed involvement in protein transport through the secretory pathway and to lysosomes in mammalian cells. However, the differences are beginning to recede in the face of additional experiments; the formation of clathrin coated vesicles is no longer commonly thought to be obligately coupled to transport through the secretory pathway in mammalian cells (Rothman 1986; Brodsky, 1988), and the role of clathrin in retaining a Golgi membrane protein in yeast may have its precedents in receptor-mediated endocytosis by mammalian cells or in secretory granule formation in endocrine cells. A unified theory of clathrin function is emerging (Brodsky, 1988) which suggests that the clathrin coat assemblage (clathrin heavy and light chains and the associated proteins) acts as a facilitator of intracellular protein transport by sorting and concentrating cargo molecules. The results from studies of clathrin-deficient yeast support this theory. Future experiments will determine whether clathrin provides its functions at different transport stages in different organisms or whether all eukaryotic cells employ clathrin at the same stages of intracellular protein transport.  相似文献   

7.
Girao H  Geli MI  Idrissi FZ 《FEBS letters》2008,582(14):2112-2119
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.  相似文献   

8.
SEC14p is the yeast phosphatidylinositol (PI)/phosphatidylcholine (PC) transfer protein, and it effects an essential stimulation of yeast Golgi secretory function. We now report that the SEC14p localizes to the yeast Golgi and that the SEC14p requirement can be specifically and efficiently bypassed by mutations in any one of at least six genes. One of these suppressor genes was the structural gene for yeast choline kinase (CKI), disruption of which rendered the cell independent of the normally essential SEC14p requirement. The antagonistic action of the CKI gene product on SEC14p function revealed a previously unsuspected influence of biosynthetic activities of the CDP-choline pathway for PC biosynthesis on yeast Golgi function and indicated that SEC14p controls the phospholipid content of yeast Golgi membranes in vivo.  相似文献   

9.
Delivery of proteins to the vacuole of the yeast Saccharomyces cerevisiae provides an excellent model system in which to study vacuole and lysosome biogenesis and membrane traffic. This organelle receives proteins from a number of different routes, including proteins sorted away from the secretory pathway at the Golgi apparatus and endocytic traffic arising from the plasma membrane. Genetic analysis has revealed at least 60 genes involved in vacuolar protein sorting, numerous components of a novel cytoplasm-to-vacuole transport pathway, and a large number of proteins required for autophagy. Cell biological and biochemical studies have provided important molecular insights into the various protein delivery pathways to the yeast vacuole. This review describes the various pathways to the vacuole and illustrates how they are related to one another in the vacuolar network of S. cerevisiae.  相似文献   

10.
In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1(ala43)), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1(ala43) yeast are deficient in their ability to deliver the soluble dye FM4-64 to the vacuole. Under conditions in which vesicles accumulate, FM4-64 stained primarily the cytoplasm as well as fragmented vacuoles. In addition, alpha-factor-stimulated endocytosis of the alpha-factor receptor, Ste2, was fully blocked, as evidenced using a Ste2-green fluorescent protein fusion protein as well as metabolic labeling studies. This suggests a direct role for Snc v-SNAREs in the retrieval of membrane proteins from the cell surface. Moreover, this idea is supported by genetic and physical data that demonstrate functional interactions with t-SNAREs that confer endosomal transport (e.g., Tlg1,2). Notably, Snc1(ala43) was found to be nonfunctional in cells lacking Tlg1 or Tlg2. Thus, we propose that synaptobrevin/VAMP family members are engaged in anterograde and retrograde protein sorting steps between the Golgi and the plasma membrane.  相似文献   

11.
The secretory pathway of eukaryotic cells comprises a network of organelles that connects three large membranes, the plasma membrane, the vacuole and the endoplasmic reticulum. The Golgi apparatus and the various post-Golgi organelles that control vacuolar sorting, secretion and endocytosis can be regarded as intermediate organelles of the endocytic and biosynthetic routes. Many processes in the secretory pathway have evolved differently in plants and cannot be studied using yeast or mammalian cells as models. The best characterized organelles are the Golgi apparatus and the prevacuolar compartment, but recent work has shed light on the role of the trans Golgi network, which has to be regarded as a separate organelle in plants. In this study, we wish to highlight recent findings regarding the late secretory pathway and its crosstalk with the early secretory pathway as well as the endocytic route in plants. Recently published findings and suggested models are discussed within the context of known features of the equivalent pathway in other eukaryotes.  相似文献   

12.
H Riezman 《Cell》1985,40(4):1001-1009
Yeast cells have been shown to internalize lucifer yellow CH by endocytosis. Internalization of the fluorescent dye is time-, temperature-, and energy-dependent, it is not saturable, and the dye is accumulated in the vacuole. Some of the yeast secretory mutants that accumulate endoplasmic reticulum or Golgi bodies are defective for endocytosis at restrictive temperature, while others are not. All of the mutants that accumulate secretory vesicles are defective for endocytosis. These results suggest that efficient transport of proteins from the endoplasmic reticulum to the Golgi apparatus and from the Golgi to secretory vesicles is not necessary for endocytosis. In contrast, endocytosis may be obligatorily coupled with the latest steps of secretion.  相似文献   

13.
George Palade, a founding father of cell biology and of the American Society for Cell Biology (ASCB), established the ultrastructural framework for an analysis of how proteins are secreted and membranes are assembled in eukaryotic cells. His vision inspired a generation of investigators to probe the molecular mechanisms of protein transport. My laboratory has dissected these pathways with complementary genetic and biochemical approaches. Peter Novick, one of my first graduate students, isolated secretion mutants of Saccharomyces cerevisiae, and through cytological analysis of single and double mutants and molecular cloning of the corresponding SEC genes, we established that yeast cells use a secretory pathway fundamentally conserved in all eukaryotes. A biochemical reaction that recapitulates the first half of the secretory pathway was used to characterize Sec proteins that comprise the polypeptide translocation channel in the endoplasmic reticulum (ER) membrane (Sec61) and the cytoplasmic coat protein complex (COPII) that captures cargo proteins into transport vesicles that bud from the ER.  相似文献   

14.
Sorting of membrane proteins between compartments of the secretory pathway is mediated in part by their transmembrane domains (TMDs). In animal cells, TMD length is a major factor in Golgi retention. In yeast, the role of TMD signals is less clear; it has been proposed that membrane proteins travel by default to the vacuole, and are prevented from doing so by cytoplasmic signals. We have investigated the targeting of the yeast endoplasmic reticulum (ER) t-SNARE Ufe1p. We show that the amino acid sequence of the Ufe1p TMD is important for both function and ER targeting, and that the requirements for each are distinct. Targeting is independent of Rer1p, the only candidate sorting receptor for TMD sequences currently known. Lengthening the Ufe1p TMD allows transport along the secretory pathway to the vacuole or plasma membrane. The choice between these destinations is determined by the length and composition of the TMD, but not by its precise sequence. A longer TMD is required to reach the plasma membrane in yeast than in animal cells, and shorter TMDs direct proteins to the vacuole. TMD-based sorting is therefore a general feature of the yeast secretory pathway, but occurs by different mechanisms at different points.  相似文献   

15.
Phosphatidic acid is a central intermediate of biosynthetic lipid metabolism as well as an important signaling molecule in the cell. These studies assess the internalization, or retrograde transport , and metabolism of phosphatidic acid in yeast using a fluorescent analog. An analog of phosphatidic acid fluorescently labeled at the sn -2 position with N-4-nitrobenz-2-oxa-1, 3-diazole-aminocaproic acid (NBD-phosphatidic acid) was introduced to yeast cells by spontaneous transfer from phospholipid vesicles. Transport and metabolism of the NBD-phosphatidic acid were then monitored by fluorescence spectrophotometry, fluorescence microscopy and routine biochemical methods. Primary metabolites of the NBD-phosphatidic acid in yeast were found to be NBD-diacylgycerol and NBD-phosphatidylinositol. Experiments in cells possessing different levels of phosphatidate phosphatase activity suggest that conversion of the NBD-phosphatidic acid to NBD-diacylglycerol is not a pre-requisite for internalization in yeast. Internalization is sensitive to decreased temperature, but neither ATP depletion nor a sec6-4 mutation, which interrupts endocytosis, has an affect. Thus, internalization of NBD-phosphatidic acid apparently occurs via a non-endocytic route. These characteristics of retrograde transport of NBD-phosphatidic acid in yeast differ significantly from transport of other NBD-phospholipids in yeast as well as NBD-phosphatidic acid transport in mammalian fibroblasts.  相似文献   

16.
M K Aalto  H Ronne    S Kernen 《The EMBO journal》1993,12(11):4095-4104
The yeast SEC1 gene encodes a hydrophilic protein that functions at the terminal stage in secretion. We have cloned two yeast genes, SSO1 and SSO2, which in high copy number can suppress sec1 mutations and also mutations in several other late acting SEC genes, such as SEC3, SEC5, SEC9 and SEC15. SSO1 and SSO2 encode small proteins with N-terminal hydrophilic domains and C-terminal hydrophobic tails. The two proteins are 72% identical in sequence and together perform an essential function late in secretion. Sso1p and Sso2p show significant sequence similarity to six other proteins. Two of these, Sed5p and Pep12p, are yeast proteins that function in transport from ER to Golgi and from Golgi to the vacuole, respectively. Also related to Sso1p and Sso2p are three mammalian proteins: epimorphin, syntaxin A/HPC-1 and syntaxin B. A nematode cDNA product also belongs to the new protein family. The new protein family is thus present in a wide variety of eukaryotic cells, where its members function at different stages in vesicular transport.  相似文献   

17.
Sho W. Suzuki 《Autophagy》2018,14(9):1654-1655
Membrane protein recycling is a fundamental process from yeast to humans. The lysosome (or vacuole in yeast) receives membrane proteins from the secretory, endocytic, and macroautophagy/autophagy pathways. Although some of these membrane proteins appear to be recycled, the molecular mechanisms underlying this retrograde trafficking are poorly understood. Our recent study revealed that the transmembrane autophagy protein Atg27 is recycled from the vacuole membrane using a 2-step recycling process. First, the Snx4 complex recycles Atg27 from the vacuole to the endosome. Then, the retromer complex mediates endosome-to-Golgi retrograde transport. Thus, 2 distinct protein complexes facilitate the sequential retrograde trafficking for Atg27. As far as we know, Atg27 is the first physiological substrate for the vacuole-to-endosome retrograde trafficking pathway.  相似文献   

18.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

19.
Several complementary approaches have been fruitful in the study of transport from the ER to the Golgi complex in yeast. Mutational analysis has led to the identification of genes required for this process, many of which are now being studied at the molecular and biochemical level. In the case of SEC18, DNA sequence analysis has demonstrated homology to a factor needed for transport in mammalian in vitro systems. In addition, the events that take place at this stage of the secretory pathway have been reconstituted in vitro.  相似文献   

20.
Sphingoid long-chain base 1-phosphates act as bioactive lipid molecules in eukaryotic cells. In budding yeast, long-chain base 1-phosphates are synthesized mainly by the long-chain base kinase Lcb4. We recently reported that, soon after yeast cells enter into the stationary phase, Lcb4 is rapidly degraded by being delivered to the vacuole in a palmitoylation- and phosphorylation-dependent manner. In this study, we investigated the complete trafficking pathway of Lcb4, from its synthesis to its degradation. After membrane anchoring by palmitoylation at the Golgi apparatus, Lcb4 is delivered to the plasma membrane (PM) through the late Sec pathway and then to the endoplasmic reticulum (ER). The yeast ER consists of a cortical network juxtaposed to the PM (cortical ER) with tubular connections to the nuclear envelope (nuclear ER). Remarkably, the localization of Lcb4 is restricted to the cortical ER. As the cells reach the stationary phase, G(1) cell cycle arrest initiates Lcb4 degradation and its delivery to the vacuole via the Golgi apparatus. The protein transport pathway from the PM to the ER found in this study has not been previously reported. We speculate that this novel pathway is mediated by the PM-ER contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号