首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dong C  Wu G 《Cellular signalling》2007,19(11):2388-2399
Three Rab GTPases, Rab1, Rab2 and Rab6, are involved in protein transport between the endoplasmic reticulum (ER) and the Golgi. Whereas Rab1 regulates the anterograde ER-to-Golgi transport, Rab2 and Rab6 coordinate the retrograde Golgi-to-ER transport. We have previously demonstrated that Rab1 differentially modulates the export trafficking of distinct G protein-coupled receptors (GPCRs). In this report, we determined the role of Rab2 and Rab6 in the cell-surface expression and signaling of alpha(2B)-adrenergic (alpha(2B)-AR), beta(2)-AR and angiotensin II type 1 receptors (AT1R). Expression of the GTP-bound mutant Rab2Q65L significantly attenuated the cell-surface expression of both alpha(2B)-AR and beta(2)-AR, whereas the GTP-bound mutant Rab6Q72L selectively inhibited the transport of beta(2)-AR, but not alpha(2B)-AR. Similar results were obtained by siRNA-mediated selective knockdown of endogenous Rab2 and Rab6. Consistently, Rab2Q65L and Rab2 siRNA inhibited alpha(2B)-AR and beta(2)-AR signaling measured as ERK1/2 activation and cAMP production, respectively, whereas Rab6Q72L and Rab6 siRNA reduced signaling of beta(2)-AR, but not alpha(2B)-AR. Similar to the beta(2)-AR, AT1R expression at the cell surface and AT1R-promoted inositol phosphate accumulation were inhibited by Rab6Q72L. Furthermore, the nucleotide-free mutant Rab6N126I selectively attenuated the cell-surface expression of beta(2)-AR and AT1R, but not alpha(2B)-AR. These data demonstrate that Rab2 and Rab6 differentially influence anterograde transport and signaling of GPCRs. These data also provide the first evidence indicating that Rab6-coordinated retrograde transport selectively modulates intracellular trafficking and signaling of GPCRs.  相似文献   

2.
Rab1 GTPase coordinates vesicle-mediated protein transport specifically from the endoplasmic reticulum (ER) to the Golgi apparatus. We recently demonstrated that Rab1 is involved in the export of angiotensin II (Ang II) type 1 receptor (AT1R) to the cell surface in HEK293 cells and that transgenic mice overexpressing Rab1 in the myocardium develop cardiac hypertrophy. To expand these studies, we determined in this report whether the modification of Rab1-mediated ER-to-Golgi transport can alter the cell surface expression and function of endogenous AT1R and AT1R-mediated hypertrophic growth in primary cultures of neonatal rat ventricular myocytes. Adenovirus-mediated gene transfer of wild-type Rab1 (Rab1WT) significantly increased cell surface expression of endogenous AT1R in neonatal cardiomyocytes, whereas the dominant-negative mutant Rab1N124I had the opposite effect. Brefeldin A treatment blocked the Rab1WT-induced increase in AT1R cell surface expression. Fluorescence analysis of the subcellular localization of AT1R revealed that Rab1 regulated AT1R transport specifically from the ER to the Golgi in HL-1 cardiomyocytes. Consistent with their effects on AT1R export, Rab1WT and Rab1N124I differentially modified the AT1R-mediated activation of ERK1/2 and its upstream kinase MEK1. More importantly, adenovirus-mediated expression of Rab1N124I markedly attenuated the Ang II-stimulated hypertrophic growth as measured by protein synthesis, cell size, and sarcomeric organization in neonatal cardiomyocytes. In contrast, Rab1WT expression augmented the Ang II-mediated hypertrophic response. These data strongly indicate that AT1R function in cardiomyocytes can be modulated through manipulating AT1R traffic from the ER to the Golgi and provide the first evidence implicating the ER-to-Golgi transport as a regulatory site for control of cardiomyocyte growth.  相似文献   

3.
The molecular mechanisms underlying the transport from the Golgi to the cell surface of G protein-coupled receptors remain poorly elucidated. Here we determined the role of Rab26, a Ras-like small GTPase involved in vesicle-mediated secretion, in the cell surface export of α2-adrenergic receptors. We found that transient expression of Rab26 mutants and siRNA-mediated depletion of Rab26 significantly attenuated the cell surface numbers of α2A-AR and α2B-AR, as well as ERK1/2 activation by α2B-AR. Furthermore, the receptors were extensively arrested in the Golgi by Rab26 mutants and siRNA. Moreover, Rab26 directly and activation-dependently interacted with α2B-AR, specifically the third intracellular loop. These data demonstrate that the small GTPase Rab26 regulates the Golgi to cell surface traffic of α2-adrenergic receptors, likely through a physical interaction. These data also provide the first evidence implicating an important function of Rab26 in coordinating plasma membrane protein transport.  相似文献   

4.
The structural determinants for the export trafficking of G protein-coupled receptors are poorly defined. In this report, we determined the role of carboxyl termini (CTs) of alpha2B-adrenergic receptor (AR) and angiotensin II type 1A receptor (AT1R) in their transport from the endoplasmic reticulum (ER) to the cell surface. The alpha2B-AR and AT1R mutants lacking the CTs were completely unable to transport to the cell surface and were trapped in the ER. Alanine-scanning mutagenesis revealed that residues Phe436 and Ile433-Leu444 in the CT were required for alpha2B-AR export. Insertion or deletion between Phe436 and Ile443-Leu444 as well as Ile443-Leu444 mutation to FF severely disrupted alpha2B-AR transport, indicating there is a defined spatial requirement, which is essential for their function as a single motif regulating receptor transport from the ER. Furthermore, the carboxyl-terminally truncated as well as Phe436 and Ile443-Leu444 mutants were unable to bind ligand and the alpha2B-AR CT conferred its transport properties to the AT1R mutant without the CT in a Phe436-Ile443-Leu444-dependent manner. These data suggest that the Phe436 and Ile443-Leu444 may be involved in both proper folding and export from the ER of the receptor. Similarly, residues Phe309 and Leu316-Leu317 in the CT were identified as essential for AT1R export. The sequence F(X)6LL (where X can be any residue, and L is leucine or isoleucine) is highly conserved in the membrane-proximal CTs of many G protein-coupled receptors and may function as a common motif mediating receptor transport from the ER to the cell surface.  相似文献   

5.
We previously demonstrated that the alpha2B-adrenergic receptor mutant, in which the F(x)6IL motif in the membrane-proximal carboxyl terminus were mutated to alanines (alpha2B-ARm), is deficient in export from the endoplasmic reticulum (ER). In this report, we determined if alpha2B-ARm could modulate transport from the ER to the cell surface and signaling of its wild-type counterpart. Transient expression of alpha2B-ARm in HEK293T cells markedly inhibited cell-surface expression of wild-type alpha2B-AR, as measured by radioligand binding. Subcellular localization demonstrated that alpha2B-ARm trapped alpha2B-AR in the ER. The alpha2B-AR was shown to form homodimers and heterodimers with alpha2B-ARm as measured by co-immunoprecipitation of the receptors tagged with green fluorescent protein and hemagglutinin epitopes. In addition to alpha2B-AR, the transport of alpha2A-AR and alpha2C-AR to the cell surface was also inhibited by alpha2B-ARm. Furthermore, transient expression of alpha2B-ARm significantly reduced cell-surface expression of endogenous alpha2-AR in NG108-15 and HT29 cells. Consistent with its effect on alpha2-AR cell-surface expression, alpha2B-ARm attenuated alpha2A-AR- and alpha2B-AR-mediated ERK1/2 activation. These data demonstrated that the ER-retained mutant alpha2B-ARm conferred a dominant negative effect on the cell-surface expression of wild-type alpha2-AR, which is likely mediated through heterodimerization. These data indicate a crucial role of ER export in the regulation of cell-surface targeting and signaling of G protein-coupled receptors.  相似文献   

6.
It is known that Rab1 regulates the expression and function of beta-adrenoceptors (β-ARs) in many cells. However, the effect of these changes in rat pulmonary microvascular endothelial cells (RPMVECs) is not known. In the present study, we investigated the role of Rab1, a Ras-like GTPase that coordinates protein transport from the endoplasmic reticulum (ER) to the Golgi body and regulates the cell-surface targeting and function of endogenous β-ARs in RPMVECs in the presence of lipopolysaccharide (LPS).We found that lentivirus-driven expression of wild-type Rab1 (Rab1WT) in RPMVECs strongly enhanced the amount of β-ARs on the cell surface, whereas the dominant-negative mutant Rab1N124I significantly attenuated β-ARs expression on the cell surface. In addition, LPS stimulation significantly reduced β-ARs expression on the cell surface in RPMVECs; however, this effect was reversed by over-expression of wild-type Rab1WT. Fluorescent microscopy analysis demonstrated that expression of Rab1N124I and Rab1 small interfering RNA (siRNA) significantly induced the accumulation of green fluorescent protein (GFP)-tagged β2-AR in the ER. Consistent with their effects on β-ARs export, Rab1WT and Rab1N124I differentially modified the β-AR-mediated activation of extracellular signal-regulated kinase1/2 (ERK1/2). Importantly, over-expression of Rab1WT markedly reduced LPS-induced hyper-permeability of RPMVECs by increasing the expression of β2-AR on the cell surface. These data reveal that β-ARs function in RPMVECs could be modulated by manipulating β-ARs traffic from the ER to the Golgi body. We propose the ER-to-Golgi transport as a regulatory site for control of permeability of RPMVECs.  相似文献   

7.
8.
9.
Hirasawa A  Awaji T  Xu Z  Shinoura H  Tsujimoto G 《Life sciences》2001,68(19-20):2259-2267
Alpha1-adrenergic receptors (AR) are members of the superfamily of G protein-coupled receptors (GPCRs) which mediate the effects of the sympathetic nervous system. Alpha1-AR comprise a heterogeneous family of three distinct isoforms of alpha1A, alpha1B and alpha1D; however, very little is known about their difference in physiological role or regulation. We have recently observed a subtype-specific differences in subcellular localization of alpha1-ARs; thus, alpha1A-AR predominantly localize intracellularly, while alpha1B-AR on the cell surface. To examine the molecular mechanism for the subtype-specific differences in subcellular localization, we conducted a search for novel proteins that interact with the alpha1B-AR, specifically focusing on the carboxyl-terminal cytoplasmic domain. Using interaction cloning and biochemical techniques, we demonstrate that gC1q-R interacts with alpha1B-AR in vitro and in vivo through the specific site, and that in cells which co-express alpha1B-AR and gC1q-R, the subcellular localization of alpha1B-AR is markedly altered and its expression is down-regulated. These results suggest that gC1q-R plays a role in the regulation of the subcellular localization as well as the function of alpha1B-ARs.  相似文献   

10.
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.  相似文献   

11.
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, REP remains associated with the modified Rab until it is delivered to the appropriate subcellular membrane. It remains unclear whether docking of the Rab with the correct membrane is solely a function of features contained within the prenylated Rab itself (with REP serving as a "passive" carrier) or whether REP actively participates in the targeting process. To address this issue, we took advantage of a mutation in the alpha2 helix of Rab1B (i.e. Y78D) that abolishes REP and GDI interaction without disrupting nucleotide binding or hydrolysis. These studies demonstrate that replacing the C-terminal GGCC residues of Rab1B(Y78D) with a CLLL motif permits this protein to be prenylated by geranylgeranyltransferase I but not II both in cell-free enzyme assays and in transfected cells. Subcellular fractionation and immunofluorescence studies reveal that the prenylated Rab1B(Y78D)CLLL, which remains deficient in REP and GDI association is, nonetheless, delivered to the Golgi and endoplasmic reticulum (ER) membranes. When the dominant-negative S22N mutation was inserted into Rab1B-CLLL, the resulting monoprenylated construct suppressed ER --> Golgi protein transport. However, when the Y78D mutation was added to the latter construct, its inhibitory effect on protein trafficking was lost despite the fact that it was localized to the ER/Golgi membrane. Therefore, protein interactions mediated by the alpha2 helical domain of Rab1B(S22N) appear to be essential for its functional interaction with components of the ER --> Golgi transport machinery.  相似文献   

12.
13.
14.
Takida S  Wedegaertner PB 《FEBS letters》2004,567(2-3):209-213
Heterotrimeric G proteins are lipid-modified, peripheral membrane proteins that function at the inner surface of the plasma membrane (PM) to relay signals from cell-surface receptors to downstream effectors. Cellular trafficking pathways that direct nascent G proteins to the PM are poorly defined. In this report, we test the proposal that G proteins utilize the classical exocytic pathway for PM targeting. PM localization of the G protein heterotrimers alpha s beta 1 gamma 2 and alpha q beta 1 gamma 2 occurred independently of treatment of cells with Brefeldin A, which disrupts the Golgi, or expression of Sar1 mutants, which prevent the formation of endoplasmic reticulum to Golgi transport vesicles. Moreover, the palmitoylation of alpha q was unaffected by Brefeldin A treatment, even though the palmitoylation of SNAP25 was blocked by Brefeldin A. Non-palmitoylated mutants of alpha s and alpha q failed to stably bind to beta gamma and displayed a dispersed cytoplasmic localization when co-expressed with beta gamma. These findings support a refined model of the PM trafficking pathway of G proteins, involving assembly of the heterotrimer at the endoplasmic reticulum and transport to the PM independently of the Golgi.  相似文献   

15.
Rab5 GTPase modulates the trafficking of the cell surface receptors, including G protein-coupled β-adrenergic receptors (β-ARs). Here, we have determined the role of Rab5 in regulating the internalization of β-ARs in lung microvascular endothelial cells (LMECs) and in maintaining the integrity and permeability of endothelial cell barrier. Our data demonstrate that lipopolysaccharide (LPS) treatment disrupts LMEC barrier function and reduces the cell surface expression of β-ARs. Furthermore, the activation of β-ARs, particularly β2-AR, is able to protect the LMEC permeability from LPS injury. Moreover, siRNA-mediated knockdown of Rab5 inhibits both the basal and agonist-provoked internalization of β-ARs, therefore, enhancing the cell surface expression of the receptors and receptor-mediated ERK1/2 activation. Importantly, knockdown of Rab5 not only inhibits the LPS-induced effects on β-ARs but also protects the LMEC monolayer permeability. All together, these data provide strong evidence indicating a crucial role of Rab5-mediated internalization of β-ARs in functional regulation of LMECs.  相似文献   

16.
The studies on the intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly focused on the C termini of the receptors. In this report we determined the role of the extracellular N termini of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the anterograde transport from the endoplasmic reticulum (ER) through the Golgi to the cell surface. The N-terminal-truncated alpha(2B)-AR mutant is completely unable to target to the cell surface. A single Met-6 residue is essential for the export of alpha(2B)-AR from the ER, likely through modulating correct alpha(2B)-AR folding in the ER. The Tyr-Ser motif, highly conserved in the membrane-proximal N termini of all alpha(2)-AR subtypes, is required for the exit of alpha(2A)-AR and alpha(2B)-AR from the Golgi apparatus, thus representing a novel Tyr-based motif modulating GPCR transport at the Golgi level. These data provide the first evidence indicating an essential role of the N termini of GPCRs in the export from distinct intracellular compartments along the secretory pathway.  相似文献   

17.
We used multiple approaches to investigate the role of Rab6 relative to Zeste White 10 (ZW10), a mitotic checkpoint protein implicated in Golgi/endoplasmic reticulum (ER) trafficking/transport, and conserved oligomeric Golgi (COG) complex, a putative tether in retrograde, intra-Golgi trafficking. ZW10 depletion resulted in a central, disconnected cluster of Golgi elements and inhibition of ERGIC53 and Golgi enzyme recycling to ER. Small interfering RNA (siRNA) against RINT-1, a protein linker between ZW10 and the ER soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 18, produced similar Golgi disruption. COG3 depletion fragmented the Golgi and produced vesicles; vesicle formation was unaffected by codepletion of ZW10 along with COG, suggesting ZW10 and COG act separately. Rab6 depletion did not significantly affect Golgi ribbon organization. Epistatic depletion of Rab6 inhibited the Golgi-disruptive effects of ZW10/RINT-1 siRNA or COG inactivation by siRNA or antibodies. Dominant-negative expression of guanosine diphosphate-Rab6 suppressed ZW10 knockdown induced-Golgi disruption. No cross-talk was observed between Rab6 and endosomal Rab5, and Rab6 depletion failed to suppress p115 (anterograde tether) knockdown-induced Golgi disruption. Dominant-negative expression of a C-terminal fragment of Bicaudal D, a linker between Rab6 and dynactin/dynein, suppressed ZW10, but not COG, knockdown-induced Golgi disruption. We conclude that Rab6 regulates distinct Golgi trafficking pathways involving two separate protein complexes: ZW10/RINT-1 and COG.  相似文献   

18.
Yeast Ypt6p, the homologue of the mammalian Rab6 GTPase, is not essential for cell viability. Based on previous studies with ypt6 deletion mutants, a regulatory role of the GTPase either in protein retrieval to the trans-Golgi network or in forward transport between the endoplasmic reticulum (ER) and early Golgi compartments was proposed. To assess better the primary role(s) of Ypt6p, temperature-sensitive ypt6 mutants were generated and analyzed biochemically and genetically. Defects in N-glycosylation of proteins passing the Golgi and of Golgi-resident glycosyltransferases as well as protein sorting defects in the trans-Golgi were recorded shortly after functional loss of Ypt6p. ER-to-Golgi transport and protein secretion were delayed but not interrupted. Mis-sorting of the vesicular SNARE Sec22p to the late Golgi was also observed. Combination of the ypt6-2 mutant allele with a number of mutants in forward and retrograde transport between ER, Golgi, and endosomes led to synthetic negative growth defects. The results obtained indicate that Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking.  相似文献   

19.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   

20.
G protein-coupled receptors (GPCRs) are a superfamily of cell-surface receptors that regulate a variety of cell functions by responding to a myriad of ligands. The magnitude of the response elicited by a ligand is dictated by the level of receptor available at the plasma membrane. GPCR expression levels at the cell surface are a balance of three highly regulated, dynamic intracellular trafficking processes, namely export, internalization and degradation. This review will cover recent advances in understanding the mechanism underlying GPCR export trafficking by focusing on specific motifs required for ER export and the role of the Ras-like Rab1 GTPase and glycosylation in regulating ER–Golgi-cell-surface transport. The manifestation of diseases due to the disruption of GPCR export is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号