首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Single particle electron cryomicroscopy (cryo-EM) is often performed using EM grids coated with a perforated or holey layer of amorphous carbon. Regular arrays of holes enable efficient cryo-EM data collection and several methods for the production of micropatterned holey-carbon film coated grids have been described. However, a new generation of direct detector device (DDD) electron microscope cameras can benefit from hole diameters that are smaller than currently available. Here we extend a previously proposed method involving soft lithography with a poly(dimethylsiloxane) (PDMS) stamp for the production of holey-carbon film coated EM grids. By incorporating electron-beam (e-beam) lithography and modifying the procedure, we are able to produce low-cost high-quality holey-carbon film coated EM grids with ∼500 nm holes spaced 4 μm apart centre-to-centre. We demonstrate that these grids can be used for cryo-EM. Furthermore, we show that by applying image shifts to obtain movies of the carbon regions beside the holes after imaging the holes, the contrast transfer function (CTF) parameters needed for calculation of high-resolution cryo-EM maps with a DDD can be obtained efficiently.  相似文献   

5.
6.
    
  相似文献   

7.
8.
9.
    
  1. Download : Download high-res image (233KB)
  2. Download : Download full-size image
  相似文献   

10.
    
Structure determination of novel biological macromolecules by X‐ray crystallography can be facilitated by the use of small structural fragments, some of only a few residues in length, as effective search models for molecular replacement to overcome the phase problem. Independence from the need for a complete pre‐existing model with sequence similarity to the crystallized molecule is the primary appeal of ARCIMBOLDO, a suite of programs which employs this ab initio algorithm for phase determination. Here, the use of ARCIMBOLDO is investigated to overcome the phase problem with the electron cryomicroscopy (cryoEM) method known as microcrystal electron diffraction (MicroED). The results support the use of the ARCIMBOLDO_SHREDDER pipeline to provide phasing solutions for a structure of proteinase K from 1.6 Å resolution data using model fragments derived from the structures of proteins sharing a sequence identity of as low as 20%. ARCIMBOLDO_SHREDDER identified the most accurate polyalanine fragments from a set of distantly related sequence homologues. Alternatively, such templates were extracted in spherical volumes and given internal degrees of freedom to refine towards the target structure. Both modes relied on the rotation function in Phaser to identify or refine fragment models and its translation function to place them. Model completion from the placed fragments proceeded through phase combination of partial solutions and/or density modification and main‐chain autotracing using SHELXE. The combined set of fragments was sufficient to arrive at a solution that resembled that determined by conventional molecular replacement using the known target structure as a search model. This approach obviates the need for a single, complete and highly accurate search model when phasing MicroED data, and permits the evaluation of large fragment libraries for this purpose.  相似文献   

11.
Outer dynein arms, the force generators for axonemal motion, form arrays on microtubule doublets in situ, although they are bouquet-like complexes with separated heads of multiple heavy chains when isolated in vitro. To understand how the three heavy chains are folded in the array, we reconstructed the detailed 3D structure of outer dynein arms of Chlamydomonas flagella in situ by electron cryo-tomography and single-particle averaging. The outer dynein arm binds to the A-microtubule through three interfaces on two adjacent protofilaments, two of which probably represent the docking complex. The three AAA rings of heavy chains, seen as stacked plates, are connected in a striking manner on microtubule doublets. The tail of the alpha-heavy chain, identified by analyzing the oda11 mutant, which lacks alpha-heavy chain, extends from the AAA ring tilted toward the tip of the axoneme and towards the inside of the axoneme at 50 degrees , suggesting a three-dimensional power stroke. The neighboring outer dynein arms are connected through two filamentous structures: one at the exterior of the axoneme and the other through the alpha-tail. Although the beta-tail seems to merge with the alpha-tail at the internal side of the axoneme, the gamma-tail is likely to extend at the exterior of the axoneme and join the AAA ring. This suggests that the fold and function of gamma-heavy chain are different from those of alpha and beta-chains.  相似文献   

12.
    
  1. Download : Download high-res image (192KB)
  2. Download : Download full-size image
  相似文献   

13.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

14.
Detector technology plays a pivotal role in high-resolution and high-throughput cryo-EM structure determination. Compared with the first-generation, single-electron counting direct detection camera (Gatan K2), the latest K3 camera is faster, larger, and now offers a correlated-double sampling mode (CDS). Importantly this results in a higher DQE and improved throughput compared to its predecessor. In this study, we focused on optimizing camera data collection parameters for daily use within a cryo-EM facility and explored the balance between throughput and resolution. In total, eight data sets of murine heavy-chain apoferritin were collected at different dose rates and magnifications, using 9-hole image shift data collection strategies. The performance of the camera was characterized by the quality of the resultant 3D reconstructions. Our results demonstrated that the Gatan K3 operating in CDS mode outperformed standard (nonCDS) mode in terms of reconstruction resolution in all tested conditions with 8 electrons per pixel per second being the optimal dose rate. At low magnification (64kx) we were able to achieve reconstruction resolutions of 149% of the physical Nyquist limit (1.8 Å with a 1.346 Å physical pixel size). Low magnification allows more particles to be collected per image, aiding analysis of heterogeneous samples requiring large data sets. At moderate magnification (105kx, 0.834 Å physical pixel size) we achieved a resolution of 1.65 Å within 8-h of data collection, a condition optimal for achieving high-resolution on well behaved samples. Our results also show that for an optimal sample like apoferritin, one can achieve better than 2.5 Å resolution with 5 min of data collection. Together, our studies validate the most efficient ways of imaging protein complexes using the K3 direct detector and will greatly benefit the cryo-EM community.  相似文献   

15.
    
Electron diffraction provides a powerful tool to solve the structures of small protein crystals. However, strong interactions between the electrons and the materials limit the application of the electron crystallographic method on large protein crystals with micrometer or larger sizes. Here, we used the focused ion beam (FIB) equipped on the scanning electron microscope (SEM) to mill a large crystal to thin lamella. The influences of the milling on the crystal lamella were observed and investigated, including radiation damage on the crystal surface during the FIB imaging, deformation of the thin crystal lamella, and variation in the diffraction intensities under electron radiation. These observations provide important information to optimize the FIB milling, and hence is important to obtain high-quality crystal samples for routine structure determination of protein crystals using the electron cryo-microscope.  相似文献   

16.
    
The efficient mechanism by which double-stranded DNA bacteriophages deliver their chromosome across the outer membrane, cell wall, and inner membrane of Gram-negative bacteria remains obscure. Advances in single-particle electron cryomicroscopy have recently revealed details of the organization of the DNA injection apparatus within the mature virion for various bacteriophages, including epsilon15 (?15) and P-SSP7. We have used electron cryotomography and three-dimensional subvolume averaging to capture snapshots of ?15 infecting its host Salmonella anatum. These structures suggest the following stages of infection. In the first stage, the tailspikes of ?15 attach to the surface of the host cell. Next, ?15's tail hub attaches to a putative cell receptor and establishes a tunnel through which the injection core proteins behind the portal exit the virion. A tube spanning the periplasmic space is formed for viral DNA passage, presumably from the rearrangement of core proteins or from cellular components. This tube would direct the DNA into the cytoplasm and protect it from periplasmic nucleases. Once the DNA has been injected into the cell, the tube and portal seals, and the empty bacteriophage remains at the cell surface.  相似文献   

17.
    
Structures of seven CASP13 targets were determined using cryo-electron microscopy (cryo-EM) technique with resolution between 3.0 and 4.0 Å. We provide an overview of the experimentally derived structures and describe results of the numerical evaluation of the submitted models. The evaluation is carried out by comparing coordinates of models to those of reference structures (CASP-style evaluation), as well as checking goodness-of-fit of modeled structures to the cryo-EM density maps. The performance of contributing research groups in the CASP-style evaluation is measured in terms of backbone accuracy, all-atom local geometry and similarity of inter-subunit interfaces. The results on the cryo-EM targets are compared with those on the whole set of eighty CASP13 targets. A posteriori refinement of the best models in their corresponding cryo-EM density maps resulted in structures that are very close to the reference structure, including some regions with better fit to the density.  相似文献   

18.
The impact of protonation and inhibitor binding of the diheme cytochrome c peroxidase (CCP) from Nitrosomonas europaea has been examined by the technique of catalytic protein film voltammetry (PFV). Previous efforts have shown that the low-potential heme active site (L) binds substrate and yields electrocatalysis at an pyrolytic graphite edge electrode, with properties evocative of a high-potential intermediate, with E(m)>540mV (vs. normal hydrogen electrode) [A.L. Bradley, S.E. Chobot, D.M. Arciero, A.B. Hooper, S. J. Elliott, J. Biol. Chem. 279 (2004) 13297-13300]. Here we demonstrate through similar experiments that catalytic PFV generates limiting currents which allow for electrochemically-detected enzymology of the Ne CCP: such as the demonstration that pH-dependent Michaelis-Menten constants (K(m) values) reveal a pK(a) value of 6.5 associated with the "ES" complex. Further, the direct electrocatalysis is shown in the presence of known inhibitors (cyanide and azide), indicating that inhibitor binding occurs at L, and shifts the resulting catalytic midpoint potential in a negative direction. Michaelis-Menten treatment of the limiting currents generated in the presence of variable concentrations of inhibitors showed that cyanide behaved as a competitive inhibitor with a K(i) value of 0.15muM; azide revealed a mixed-mode of inhibition. The observed data were found to support a previous model of electrocatalysis, and the role of proton transfer chemistry in the active site is discussed in terms of a structural model.  相似文献   

19.
    
  1. Download : Download high-res image (58KB)
  2. Download : Download full-size image
  相似文献   

20.
Chen S 《Proteomics》2006,6(1):16-25
Current protein identification techniques are largely based on MALDI-TOF mass fingerprinting and LC-ESI MS/MS sequence tag analysis. Here we describe an improved method for rapid protein identification that uses direct infusion nanoelectrospray quadrupole time-of-flight (nanoESI QTOF) MS. Protein digests were analyzed without LC separation using nanoESI on a QSTAR XL MS/MS system in information dependent data acquisition mode. The protein identification conditions and parameters were extensively evaluated with in-solution and in-gel digested protein samples. Rapid identification of proteins was achieved and compared directly to the results obtained on the same samples using nanoflow HPLC-MS/MS on the QSTAR system. The increased throughput, reproducibility, the high data quality, and the ease of use make the direct infusion system an efficient and affordable technique for protein identification analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号