首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.  相似文献   

2.
Birds show considerable variation in sperm morphology. Closely related species and subspecies can show diagnostic differences in sperm size. There is also variation in sperm size among males within a population, and recent evidence from passerine birds suggests that the coefficient of inter‐male variation in sperm length is negatively associated with the level of sperm competition. Here we examined patterns of inter‐ and intra‐specific variation in sperm length in 12 species of sunbird (Nectariniidae) from Nigeria and Cameroon, a group for which such information is extremely limited. We found significant variation among species in sperm total length, with mean values ranging from 74 μm to 116 μm, placing these species within the short to medium sperm length range for passerine birds. Most of this variation was explained by the length of the midpiece, which contains the fused mitochondria and is an important structure for sperm energetics. Relative midpiece length was negatively correlated with the coefficient of inter‐male variation in sperm total length across species, suggesting that sperm competition may have selected for greater midpiece length in this group. We also mapped sperm lengths onto a time‐calibrated phylogeny and found support for a phylogenetic signal in all sperm length components, except head length. A test of various evolutionary or tree transformation models gave strongest support for the Brownian motion model for all sperm components, i.e. divergences were best predicted by the phylogenetic distance between lineages. The coefficients of inter‐male variation in sperm total length indicate that sperm competition is high but variable among sunbird species, as is the case with passerine birds at large.  相似文献   

3.
Sperm competition is an important force driving the evolution of sperm design and function. Inter- and intraspecific variation in sperm design are strongly influenced by the risk of sperm competition in many taxa. In contrast, the variation among sperm of one male (intramale variation) is less well understood. We investigated intramale variation in sperm design in passerine birds and found that risk of sperm competition is negatively associated with intramale variation. This result is the first clear evidence that variation among sperm within an individual male is influenced by postcopulatory sexual selection. Our finding has important implications for male traits under pre- and postcopulatory sexual selection.  相似文献   

4.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

5.
Post‐copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post‐copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter‐ and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.  相似文献   

6.
Sperm length is extremely variable across species, but a general explanation for this variation is lacking. However, when the risk of sperm competition is high, sperm length is predicted to be less variable within species, and there is some evidence for this in birds and social insects. Here, we examined intraspecific variation in sperm length, both within and between males, and its potential associations with sperm competition risk and variation in female reproductive tract morphology across dung flies. We used two measures of variation in sperm size, and testis size was employed as our index of sperm competition risk. We found no evidence of associations between sperm length variation and sperm competition or female reproductive tract variation. These results suggest that variation in sperm competition risk may not always be associated with variation in sperm morphology, and the cause(s) of sperm length variation in dung flies remains unclear.  相似文献   

7.
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among‐species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade‐off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.  相似文献   

8.
Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.  相似文献   

9.
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post‐copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra‐pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an ‘early‐burst’ model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate‐to‐high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.  相似文献   

10.
Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage.  相似文献   

11.
Sperm size varies enormously among species, but the reasons for this variation remain obscure. Since it has been suggested that swimming velocity increases with sperm length, earlier studies proposed longer (and therefore faster) sperm are advantageous under conditions of intense sperm competition. Nonetheless, previous work has been equivocal, perhaps because the intensity of sperm competition was measured indirectly. DNA profiling now provides a more direct measure of the number of offspring sired by extrapair males, and thus a more direct method of assessing the potential for sperm competition. Using a sample of 21 species of passerine birds for which DNA profiling data were available, we found a positive relation between sperm length and the degree of extrapair paternity. A path analysis, however, revealed that this relationship arises only indirectly through the positive relationship between the rate of extrapair paternity and length of sperm storage tubules (SSTs) in the female. As sperm length is correlated positively with SST length, an increase in the intensity of sperm competition leads to an increase in sperm length only through its effect on SST length. Why females vary SST length with the intensity of sperm competition is not clear, but one possibility is that it increases female control over how sperm are used in fertilization. Males, in turn, may respond on an evolutionary time scale to changes in SST size by increasing sperm length to prevent displacement from rival sperm. Previous theoretical analyses predicting that sperm size should decrease as sperm competition becomes more intense were not supported by our findings. We suggest that future models of sperm-size evolution consider not only the role of sperm competition, but also how female control and manipulation of ejaculates after insemination selects for different sperm morphologies.  相似文献   

12.

Background

The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5 900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds.

Methodology/Principal Findings

We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CVbm) and within-male variation (CVwm) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CVbm predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction.

Conclusion/Significance

We propose the CVbm index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds.  相似文献   

13.
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.  相似文献   

14.
Sperm size and sperm competition in birds.   总被引:9,自引:0,他引:9  
In a sample of 20 species of North American passerine birds we found no relation between sperm size and mating system like that previously reported in mammals (Gomendio & Roldan (Proc. R. Soc. Lond. B 243, 181 (1991)). Instead, we found a positive correlation between sperm length and the length of female sperm storage tubules (SSTS) and a negative correlation between sperm length and the number of SSTS. Both of these correlations suggest that the more than fivefold variation in sperm size we found among species can be explained by sperm competition for access to storage sites (SSTS) in females. As longer sperm appear to be able to swim faster, selection should favour long sperm when SSTS are in short supply; sperm long enough to fill an SST might also prevent access to SSTS by the sperm of other males. Conversely, selection should favour shorter sperm when there is an advantage to sperm layering within an SST promoting a last-male mating advantage. Although we conclude that sperm competition influences sperm size in birds, little is known about the interactions between sperm and SSTS. It seems clear, however, that detailed study of this interaction will provide a new dimension to the study of avian mating systems.  相似文献   

15.
Spermatozoa represent the morphologically most diverse type of animal cells and show remarkable variation in size across and also within species. To understand the evolution of this diversity, it is important to reveal to what degree this variation is genetic or environmental in origin and whether this depends on species’ life histories. Here we applied quantitative genetic methods to a pedigreed multigenerational data set of the collared flycatcher Ficedula albicollis, a passerine bird with high levels of extra‐pair paternity, to partition genetic and environmental sources of phenotypic variation in sperm dimensions for the first time in a natural population. Narrow‐sense heritability (h2) of total sperm length amounted to 0.44 ± 0.14 SE, whereas the corresponding figure for evolvability (estimated as coefficient of additive genetic variation, CVa) was 0.02 ± 0.003 SE. We also found an increase in total sperm length within individual males between the arrival and nestling period. This seasonal variation may reflect constraints in the production of fully elongated spermatozoa shortly after arrival at the breeding grounds. There was no evidence of an effect of male age on sperm dimensions. In many previous studies on laboratory populations of several insect, mammal and avian species, heritabilities of sperm morphology were higher, whereas evolvabilities were similar. Explanations for the differences in heritability may include variation in the environment (laboratory vs. wild), intensity of sexual selection via sperm competition (high vs. low) and genetic architecture that involves unusual linkage disequilibrium coupled with overdominance in one of the studied species.  相似文献   

16.
Sperm velocity is one of the main determinants of the outcome of sperm competition. Since sperm vary considerably in their morphology between and within species, it seems likely that sperm morphology is associated with sperm velocity. Theory predicts that sperm velocity may be increased by enlarged midpiece (energetic component) or flagellum length (kinetic component), or by particular ratios between sperm components, such as between flagellum length and head size. However, such associations have rarely been found in empirical studies. In a comparative framework in passerine birds, we tested these theoretical predictions both across a wide range of species and within a single family, the New World blackbirds (Icteridae). In both study groups, sperm velocity was influenced by sperm morphology in the predicted direction. Consistent with theoretical models, these results show that selection on sperm morphology and velocity are likely to be concomitant evolutionary forces.  相似文献   

17.
The evolution of sperm morphometry in pheasants   总被引:2,自引:0,他引:2  
Post-copulatory sexual selection is thought to be a potent evolutionary force driving the diversification of sperm shape and function across species. In birds, insemination and fertilization are separated in time and sperm storage increases the duration of sperm-female interaction and hence the opportunity for sperm competition and cryptic female choice. We performed a comparative study of 24 pheasant species (Phasianidae, Galliformes) to establish the relative importance of sperm competition and the duration of sperm storage for the evolution of sperm morphometry (i.e. size of different sperm traits). We found that sperm size traits were negatively associated with the duration of sperm storage but were independent of the risk of sperm competition estimated from relative testis mass. Our study emphasizes the importance of female reproductive biology for the evolution of sperm morphometry particularly in sperm-storing taxa.  相似文献   

18.
The evolutionary factors affecting testis size are well documented, with sperm competition being of major importance. However, the factors affecting sperm length are not well understood; there are no clear theoretical predictions and the empirical evidence is inconsistent. Recently, maternal effects have been implicated in sperm length variation, a finding that may offer insights into its evolution. We investigated potential proximate and microevolutionary factors influencing testis and sperm size in the bruchid beetle Callosobruchus maculatus using a combined approach of an artificial evolution experiment over 90 generations and an environmental effects study. We found that while polyandry seems to select for larger testes, it had no detectable effect on sperm length. Furthermore, population density, a proximate indicator of sperm competition risk, was not significantly associated with sperm length or testis size variation. However, there were strong maternal effects influencing sperm length.  相似文献   

19.
Sperm competition represents an important component of post-copulatory sexual selection. It has been argued that the level of sperm competition declines in birds towards the equator. However, to date, sperm competition estimates have been available mainly for avian species inhabiting the northern temperate zone. Here we apply a novel approach, using the coefficient of between-male variation (CVbm) in sperm size as an index for sperm competition risk, in a comparative analysis of 31 Afrotropical and 99 northern temperate zone passerine species. We found no difference in sperm competition risk between the two groups, nor any relationship with migration distance. However, a multivariate model indicated that sperm competition risk was highest in species with a combination of low body mass and few eggs per clutch. The effect of clutch size was most pronounced in tropical species, which indicates that sperm competition risk in tropical and temperate species is differently associated with particular life-history traits. Although tropical species had lower sperm competition risk than temperate zone species for overlapping clutch sizes, the idea of a generally reduced risk of sperm competition in tropical birds was not supported by our analysis.  相似文献   

20.
Sperm competition theory predicts that under high risk of sperm competition, males will increase the number of sperm that they allocate to a female. This prediction has been supported by some experimental studies but not by others. Here, I conducted a meta-analysis to determine whether the increase in sperm allocation under high risk of sperm competition is a generalized response across taxa. I collected data from 39 studies and 37 species. Across taxa, males under a high risk of sperm competition respond by increasing their sperm allocation (mean effect size=0.32). Number of offspring did not explain a significant portion of the variation in effect sizes. A traditional meta-analysis (i.e. without phylogenetic information) described the variation among effect sizes better than a meta-analysis that incorporates the phylogenetic relationships among species, suggesting that the increase in sperm allocation under high risk of sperm competition is similarly prevalent across taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号