首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hosts in free-living populations can experience substantial variation in the frequency and dose of pathogen exposure, which can alter disease progression and protection from future exposures. In the house finch–Mycoplasma gallisepticum (MG) system, the pathogen is primarily transmitted via bird feeders, and some birds may be exposed to frequent low doses of MG while foraging. Here we experimentally determined how low dose, repeated exposures of house finches to MG influence host responses and protection from secondary high-dose challenge. MG-naive house finches were given priming exposures that varied in dose and total number. After quantifying host responses to priming exposures, all birds were given a secondary high-dose challenge to assess immunological protection. Dose, but not the number of exposures, significantly predicted both infection and disease severity following priming exposure. Furthermore, individuals given higher priming doses showed stronger protection upon secondary, high-dose challenge. However, even single low-dose exposures to MG, a proxy for what some birds likely experience in the wild while feeding, provided significant protection against a high-dose challenge. Our results suggest that bird feeders, which serve as sources of infection in the wild, may in some cases act as “immunizers,” with important consequences for disease dynamics.  相似文献   

2.
Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host–pathogen system: house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management.  相似文献   

3.
Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity.  相似文献   

4.
Emergence of a new disease in a novel host is thought to be a rare outcome following frequent pathogen transfers between host species. However, few opportunities exist to examine whether disease emergence stems from a single successful pathogen transfer, and whether this successful lineage represents only one of several pathogen transfers between hosts. We examined the successful host transfer and subsequent evolution of the bacterial pathogen Mycoplasma gallisepticum, an emergent pathogen of house finches (Haemorhous (formerly Carpodacus) mexicanus). Our principal goals were to assess whether host transfer has been a repeated event between the original poultry hosts and house finches, whether only a single host transfer was ultimately responsible for the emergence of M. gallisepticum in these finches, and whether the spread of the pathogen from east to west across North America has resulted in spatial structuring in the pathogen. Using a phylogeny of M. gallisepticum based on 107 isolates from domestic poultry, house finches and other songbirds, we infer that the bacterium has repeatedly jumped between these two groups of hosts but with only a single lineage of M. gallisepticum persisting and evolving in house finches; bacterial evolution has produced monophyletic eastern and western North American subclades.  相似文献   

5.
Because many pathogens can infect multiple host species within a community, disease dynamics in a focal host species can be affected by the composition of the host community. We examine the extent to which spatial variation in species’ abundances in an avian host community may contribute to geographically varying prevalence of a recently emerged wildlife pathogen. Mycoplasma gallisepticum is a pathogen novel to songbirds that has caused substantial mortality in house finches (Carpodacus mexicanus) in eastern North America. Though the house finch is the primary host species for M. gallisepticum, the American goldfinch (Spinus tristis) and northern cardinal (Cardinalis cardinalis) are alternate hosts, and laboratory experiments have demonstrated M. gallisepticum transmission between house finches and goldfinches. Still unknown is the real world impact on disease dynamics of variation in abundances of the three hosts. We analyzed data from winter-long bird and disease surveys in the northeastern United States. We found that higher disease prevalence in house finches was associated with higher numbers of northern cardinals and American goldfinches, although only the effect of cardinal abundance was statistically significant. Nevertheless, our results indicate that spatial variation in bird communities has the potential to cause geographic variation in disease prevalence in house finches.  相似文献   

6.
A field study was conducted to determine the prevalence of conjunctivitis and Mycoplasma gallisepticum (MG) infections in house finches (Carpodacus mexicanus) and other songbirds common to bird feeders in Tompkins County (New York, USA). Eight hundred two individuals of 23 species and nine families of birds were captured and given physical examinations during the 14 mo study beginning in February 1998. Clinical conjunctivitis (eyelid or conjunctival swelling, erythema, and discharge) was observed in 10% (19/196) of house finches examined, and only in the winter months from November to March. Unilateral conjunctivitis was observed in 79% (15/19) of affected house finches; one case developed bilateral disease between 8 and 18 days following initial examination. Conjunctivitis was observed in a similar proportion of males and females sampled, and body condition scores and wing chord lengths were not significantly different between diseased and non-diseased house finches. Mycoplasma gallisepticum was isolated from 76% (13/17) of finches with conjunctivitis and 2% (3/168) of clinically normal house finches sampled during the study. DNA fingerprints of 11 MG isolates using random amplification of polymorphic DNA (RAPD) techniques showed no apparent differences in banding patterns over the course of the study, suggesting persistence of a single MG strain in the study population. The prevalence of conjunctivitis and MG infections declined in house finches between February/March 1998 and February/March 1999 (23% to 6%, and 20% to 5%, respectively), but only the former was significant (P < 0.05). Conjunctivitis was also observed in four American goldfinches (Carduelis tristis) and one purple finch (Carpodacus purpureus). Mycoplasma gallisepticum infection was confirmed in the purple finch, the first documented case of MG-associated conjunctivitis in this species. The purple finch isolate was similar to house finch isolates from the study site by RAPD analysis. Positive plate agglutination (PA) tests were recorded in one other goldfinch and two purple finches, suggesting exposure of these individuals to MG. Positive PA tests were also obtained from two brown-headed cowbirds (Molothrus ater) and four tufted titmice (Parus bicolor), but MG infection could not be confirmed in these cases due to lack of samples. Based on these findings, the prevalence of MG infections in hosts other than house finches appear to be low in the population sampled. There is growing evidence, however, that songbird species other than house finches are susceptible to MG infection and disease.  相似文献   

7.
Pathogenic or parasitic infections pose numerous physiological challenges to organisms. Carotenoid pigments have often been used as biomarkers of disease state and impact because they integrate multiple aspects of an individual’s condition and nutritional and health state. Some diseases are known to influence carotenoid uptake from food (e.g. coccidiosis) and carotenoid use (e.g. as antioxidants/immunostimulants in the body, or for sexually attractive coloration), but there is relatively little information in animals about how different types of carotenoids from different tissue sources may be affected by disease. Here we tracked carotenoid accumulation in two body pools (retina and plasma) as a function of disease state in free-ranging house finches (Haemorhous mexicanus). House finches in eastern North America can contract mycoplasmal conjunctivitis (Mycoplasma gallisepticum, or MG), which can progress from eye swelling to eye closure and death. Previous work showed that systemic immune challenges in house finches lower carotenoid levels in retina, where they act as photoprotectors and visual filters. We assessed carotenoid levels during the molt period, a time of year when finches uniquely metabolize ketocarotenoids (e.g. 3-hydroxy-echinenone) for acquisition of sexually selected red plumage coloration, and found that males infected with MG circulated significantly lower levels of 3-hydroxy-echinenone, but no other plasma carotenoid types, than birds exhibiting no MG symptoms. This result uncovers a key biochemical mechanism for the documented detrimental effect of MG on plumage redness in H. mexicanus. In contrast, we failed to find a relationship between MG infection status and retinal carotenoid concentrations. Thus, we reveal differential effects of an infectious eye disease on carotenoid types and tissue pools in a wild songbird. At least compared to retinal sources (which appear somewhat more temporally stable than other body carotenoid pools, even to diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.  相似文献   

8.
Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host’s response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella’s SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella’s invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella’s restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.  相似文献   

9.
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently‐bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild‐caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population‐level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate‐level differences in virulence may play an important role.  相似文献   

10.
11.
For subterranean rodents, searching for food by extension of the tunnel system and maintenance of body temperature are two of the most important factors affecting their life underground. In this study we assess the effect of ambient temperature on energetics and thermoregulation during digging in Ctenomys talarum. We measured VO2 during digging and resting at ambient temperature (Ta) below, within, and above thermoneutrality. Digging metabolic rate was lowest at Ta within the thermoneutral zone and increased at both lower and higher temperatures, but body temperature (Tb) remained constant at all Tas. Below thermoneutrality, the cost of digging and thermoregulation are additive. Heat production for thermoregulation would be compensated by heat produced as a by-product of muscular activity during digging. Above thermoneutrality, conduction would be an important mechanism to maintain a constant Tb during digging.  相似文献   

12.
《Journal of avian biology》2017,48(4):519-528
Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti‐predator behavior is among the most‐studied causes of indirect mortality during infection, particularly for systems in which a parasite's life‐cycle requires transmission from prey to predator. Significantly less work has examined whether directly‐transmitted parasites and pathogens also reduce anti‐predator behaviors. Here we test whether the directly‐transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation‐related stimuli in house finches Haemorhous mexicanus. MG causes conjunctivitis and reduces survival among free‐living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild‐caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper's hawk Accipiter cooperii) or control object (a vase or a stuffed, mounted mallard duck Anas platyrhynchos), 2) vocalizations of the same predator and non‐predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti‐predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG‐induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating.  相似文献   

13.
An epidemic of conjunctivitis among house finches (Carpodacus mexicanus) caused by Mycoplasma gallisepticum (MG) bacterial infections was first described in 1994. The disease exhibits high primary host specificity, but has been isolated from a limited number of secondary avian hosts at various times and locations. We used records from the House Finch Disease Survey, a continent-wide, volunteer monitoring project, to document the host range of conjunctivitis in birds at feeding stations and to investigate how disease in house finches might influence the spread of conjunctivitis to other hosts. Between 1994 and 1998, participants recorded 675 cases of conjunctivitis in 31 species other than house finches in eastern North America. Seventy five % of these cases were observed among three species: American goldfinches (Carduelis tristis), purple finches (Carpodacus purpureus) and house sparrows (Passer domesticus). The proportion of sites with diseased wintering populations of the three species increased over the 4 yr study and coincided with range expansion of conjunctivitis in house finches. Sites with diseased house finches present were significantly more likely to report conjunctivitis in each of the three species during the same month. These observations are most consistent with transmission of an infectious agent (presumably MG) from house finches to these secondary hosts via spillover of localized epidemics, rather than sustained interspecific transmission.  相似文献   

14.
While avoidance of sick conspecifics is common among animals, little is known about how detecting diseased conspecifics influences an organism''s physiological state, despite its implications for disease transmission dynamics. The avian pathogen Mycoplasma gallisepticum (MG) causes obvious visual signs of infection in domestic canaries (Serinus canaria domestica), including lethargy and conjunctivitis, making this system a useful tool for investigating how the perception of cues from sick individuals shapes immunity in healthy individuals. We tested whether disease-related social information can stimulate immune responses in canaries housed in visual contact with either healthy or MG-infected conspecifics. We found higher complement activity and higher heterophil counts in healthy birds viewing MG-infected individuals around 6–12 days post-inoculation, which corresponded with the greatest degree of disease pathology in infected stimulus birds. However, we did not detect the effects of disease-related social cues on the expression of two proinflammatory cytokines in the blood. These data indicate that social cues of infection can alter immune responses in healthy individuals and suggest that public information about the disease can shape how individuals respond to infection.  相似文献   

15.
Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.  相似文献   

16.
Thermoregulatory responses are known to differ seasonally in endotherms and this is often dependent on the environment and region they are resident. Holarctic animals are exposed to severe winters and substantial seasonal variation in ambient temperature. In contrast, those in the Afrotropics have less severe winters, but greater variation in temperature, rainfall and net primary production. These environmental factors place different selection pressures on physiological responses in endotherms. In this study, metabolic rate (VO2) and body temperature (Tb) were measured in captive bred Rock Kestrels (Falco rupicolus) from the Afrotropics after a period of summer and winter acclimatisation. Resting metabolic rate was significantly lower after the winter acclimatisation period than after the summer acclimatisation period, and there was a shift in the thermoneutral zone from 20–33 °C in summer to 15–30 °C in winter. However, no significant difference in basal metabolic rate between summer and winter was found. The results show that Rock Kestrels reduce energy expenditure at low ambient temperatures in winter as expected in an Afrotropical species.  相似文献   

17.
Nutrient pollution has the potential to alter many ecological interactions, including host–parasite relationships. One of the largest sources of nutrient pollution comes from anthropogenic alteration of the nitrogen (N) cycle, specifically the increased rate of nitrate (NO3-N) deposition to aquatic environments, potentially altering host–parasite relationships. This study aimed to assess the mechanisms through which nitrate may impact host–pathogen relationships using a fungal pathogen (Metschnikowia bicuspidata) parasitic to crustacean zooplankton (Daphnia dentifera) as a tractable model system. First, the influence of nitrate on host population dynamics was assessed along a gradient of nitrate concentrations. Nitrate decreased host population size and increased infection prevalence. Second, the influence of nitrate on host reproduction, mortality, and infection intensity was assessed at the individual host level by examining the relationship between pathogen dose and infection prevalence at ambient (0.4 mg NO3-N*L−1) and intermediate (12 mg NO3-N*L−1) levels of nitrate. Host fecundity and infection intensity both decreased with increasing pathogen dose, but increased nitrate levels corresponded to greater infection intensities. Nitrate had no effect on host growth rate, suggesting that hosts do not alter feeding behavior in nitrate-treated media compared with ambient conditions. This study suggests that nutrient enrichment may enhance disease through increased transmission and infection intensity, but that high levels of nitrate may result in smaller epidemics through reduced transmission caused by smaller population sizes and increased pathogen mortality.  相似文献   

18.
White-browed sparrow-weavers (Plocepasser mahali, body mass 40 g) are group-living passerines adapted to the semi-arid environment of north-eastern and south-western Africa. During winter, the nocturnal ambient temperature of these regions often falls below 0 degrees C. imposing conditions demanding an increase in thermoregulatory heat production. Individuals roost throughout the year in inverted U-shaped roost nests. We investigated the energetic advantages of roosting by measuring nest and ambient temperatures in the field, as well as the resting metabolic rate (RMR) of the birds. The sparrow-weavers exhibited a wide thermoneutral zone (13 degrees C - 32 degrees C). Although RMR at thermoneutrality (40.2 J g.h(-1)) conforms with those of other passerines. the value at 0 degrees C (74.8 J g.h(-1)) is significantly lower than expected. The slope of the line below the lower critical temperature is unexpectedly steep, however, and appears to cause the physiological requirement for nest roosting due to a high cost of thermoregulation at low temperatures, perhaps due to shivering or non-shivering thermogenesis. The nest temperature at 0 degrees C ambient is 5 degrees C. resulting in a saving of some 7% in the energy spent during winter nights when food resources are in short supply compared with the rest of the year.  相似文献   

19.
Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia.  相似文献   

20.
Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host‐plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host‐plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full‐factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life‐history traits in the temperate‐zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host‐plant quality. The effects of host‐plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature‐mediated changes in host‐plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号