共查询到20条相似文献,搜索用时 167 毫秒
1.
2.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006. 相似文献
3.
4.
Reconnaissance and latent learning in ants 总被引:6,自引:0,他引:6
Franks NR Hooper JW Dornhaus A Aukett PJ Hayward AL Berghoff SM 《Proceedings. Biological sciences / The Royal Society》2007,274(1617):1505-1509
We show that ants can reconnoitre their surroundings and in effect plan for the future. Temnothorax albipennis colonies use a sophisticated strategy to select a new nest when the need arises. Initially, we presented colonies with a new nest of lower quality than their current one that they could explore for one week without a need to emigrate. We then introduced a second identical low quality new nest and destroyed their old nest so that they had to emigrate. Colonies showed a highly significant preference for the (low quality) novel new nest over the identical but familiar one. In otherwise identical experiments, colonies showed no such discrimination when the choice was between a familiar and an unfamiliar high-quality nest. When, however, either all possible pheromone marks were removed, or landmarks were re-orientated, just before the emigration, the ants chose between identical low-quality new nests at random. These results demonstrate for the first time that ants are capable of assessing and retaining information about the quality of potential new nest sites, probably by using both pheromones and landmark cues, even though this information may only be of strategic value to the colony in the future. They seem capable, therefore, of latent learning and, more explicitly, learning what not to do. 相似文献
5.
6.
Edmund R. Hunt Thomas O'Shea-Wheller Gregory F. Albery Tamsyn H. Bridger Mike Gumn Nigel R. Franks 《Biology letters》2014,10(12)
Behavioural lateralization in invertebrates is an important field of study because it may provide insights into the early origins of lateralization seen in a diversity of organisms. Here, we present evidence for a leftward turning bias in Temnothorax albipennis ants exploring nest cavities and in branching mazes, where the bias is initially obscured by thigmotaxis (wall-following) behaviour. Forward travel with a consistent turning bias in either direction is an effective nest exploration method, and a simple decision-making heuristic to employ when faced with multiple directional choices. Replication of the same bias at the colony level would also reduce individual predation risk through aggregation effects, and may lead to a faster attainment of a quorum threshold for nest migration. We suggest the turning bias may be the result of an evolutionary interplay between vision, exploration and migration factors, promoted by the ants'' eusociality. 相似文献
7.
8.
9.
S. C. Pratt 《Insectes Sociaux》2005,52(4):383-392
This paper examines the individual behavior underlying collective choice among nest sites by the ant Temnothorax (formerly Leptothorax) curvispinosus. Colonies can actively compare options, rejecting a mediocre site when it is paired with a good one, but accepting the same
mediocre design if it is instead paired with a worse site. This ability emerges from the behavior of an active minority of
workers who organize emigrations. When one of these finds a promising site, she recruits nest mates to it, but only after
a delay that varies inversely with site quality. Ants first recruit fellow active ants via slow tandem runs, but eventually
switch to speedier transports of the colony’s passive majority. Later transports grow faster still, as ants improve their
speed with experience. An ant’s choice of recruitment type is governed by a quorum rule, such that her likelihood of starting
to transport increases with the population of the new site. The size of the quorum depends on experience, with ants demanding
a larger population to launch immediately into transport than they do to switch to transport after first leading a few tandem
runs. Perception of quorum attainment requires direct contact between ants. The ants’ behavior qualitatively matches that
of T. albipennis, where models have shown that decentralized choice of the best site depends on quality-dependent recruitment delays, amplified
by a quorum rule for initiating transport. Parameter estimates for an agent-based model show significant quantitative differences
between the species, and suggest that T. albipennis may place relatively greater emphasis on emigration speed.
Received 11 February 2005; revised 10 May 2005; accepted 20 May 2005. 相似文献
10.
11.
Susan C. Edwards Stephen C. Pratt 《Proceedings. Biological sciences / The Royal Society》2009,276(1673):3655-3661
Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants’ decentralized decision mechanism. A colony''s choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals. 相似文献
12.
Crystal M. Vincent Darryl T. Gwynne 《Proceedings. Biological sciences / The Royal Society》2014,281(1790)
Sex differences in immunity are often observed, with males generally having a weaker immune system than females. However, recent data in a sex-role-reversed species in which females compete to mate with males suggest that sexually competitive females have a weaker immune response. These findings support the hypothesis that sexual dimorphism in immunity has evolved in response to sex-specific fitness returns of investment in traits such as parental investment and longevity, but the scarcity of data in sex-reversed species prevents us from drawing general conclusions. Using an insect species in which males make a large but variable parental investment in their offspring, we use two indicators of immunocompetence to test the hypothesis that sex-biased immunity is determined by differences in parental investment. We found that when the value of paternal investment was experimentally increased, male immune investment became relatively greater than that of females. Thus, in this system, in which the direction of sexual competition is plastic, the direction of sex-biased immunity is also plastic and appears to track relative parental investment. 相似文献
13.
Many animals rely on path integration for navigation and desert ants are the champions. On leaving the nest, ants continuously integrate their distance and direction of travel so that they always know their current distance and direction from the nest and can take a direct path to home. Distance information originates from a step-counter and directional information is based on a celestial compass. So far, it has been assumed that the directional information obtained from ocelli contribute to a single global path integrator, together with directional information from the dorsal rim area (DRA) of the compound eyes and distance information from the step-counter. Here, we show that ocelli mediate a distinct compass from that mediated by the compound eyes. After travelling a two-leg outbound route, untreated foragers headed towards the nest direction, showing that both legs of the route had been integrated. In contrast, foragers with covered compound eyes but uncovered ocelli steered in the direction opposite to the last leg of the outbound route. Our findings suggest that, unlike the DRA, ocelli cannot by themselves mediate path integration. Instead, ocelli mediate a distinct directional system, which buffers the most recent leg of a journey. 相似文献
14.
Nam HS Siebers R Lee SH Park JS Kim YB Choi YJ Lee SH Crane J 《The Korean journal of parasitology》2008,46(3):187-189
House dust mites produce inhalant allergens of importance to allergic patients. We measured the major group 1 allergens, Der p 1 and Der f 1, from the house dust mites Dermatophagoides pteronyssinus and Dermatophagoides farina, respectively in 100 randomly selected domestic homes from Cheonan, Korea. Dust samples were collected by vacuuming from the living room floor and 1 mattress in each home. Der p 1 and Der f 1 were measured by double monoclonal ELISA. Der p 1 levels were very low, with geometric mean levels for floors and mattresses being 0.11 microgram/g (range: 0.01-4.05) and 0.14 microgram/g (range: 0.01-30.0), respectively. Corresponding levels of Der f 1 were higher, 7.46 microgram/g (range: 0.01-262.9) and 10.2 microgram/g (range: 0.01-230.9) for floors and mattresses, respectively. D. farinae appears to be the dominant house dust mite in Cheonan. 相似文献
15.
Excretory-secretory antigen is better than crude antigen for the serodiagnosis of clonorchiasis by ELISA 总被引:5,自引:0,他引:5
Although stool examination is the standard diagnostic method of clonorchiasis, serodiagnosis by ELISA using crude antigen is now widely used because of its convenience. However, ELISA diagnosis still suffers from cross-reactions, and therefore there is a need to improve the present conventional ELISA. The present study was undertaken to evaluate the diagnostic value of ELISA using excretory-secretory antigen (ESA) instead of crude antigen (CA) of Clonorchis sinensis. The diagnostic sensitivity of ELISA using excretory-secretory antigen was 92.5%, which was higher than that of ELISA using crude Clonorchis sinensis antigen (88.2%). In addition, the specificity of excretory-secretory antigen was found 93.1% while that of crude antigen was 87.8%. In summary, Clonorchis sinensis ESA was found to be a better serodiagnostic antigen than CA for ELISA. 相似文献
16.
Koselj K Schnitzler HU Siemers BM 《Proceedings. Biological sciences / The Royal Society》2011,278(1721):3034-3041
Foragers base their prey-selection decisions on the information acquired by the sensory systems. In bats that use echolocation to find prey in darkness, it is not clear whether the specialized diet, as sometimes found by faecal analysis, is a result of active decision-making or rather of biased sensory information. Here, we tested whether greater horseshoe bats decide economically when to attack a particular prey item and when not. This species is known to recognize different insects based on their wing-beat pattern imprinted in the echoes. We built a simulation of the natural foraging process in the laboratory, where the bats scanned for prey from a perch and, upon reaching the decision to attack, intercepted the prey in flight. To fully control echo information available to the bats and assure its unambiguity, we implemented computer-controlled propellers that produced echoes resembling those from natural insects of differing profitability. The bats monitored prey arrivals to sample the supply of prey categories in the environment and to inform foraging decisions. The bats adjusted selectivity for the more profitable prey to its inter-arrival intervals as predicted by foraging theory (an economic strategy known to benefit fitness). Moreover, unlike in previously studied vertebrates, foraging performance of horseshoe bats was not limited by costly rejections of the profitable prey. This calls for further research into the evolutionary selection pressures that sharpened the species's decision-making capacity. 相似文献
17.
Matthias Konrad Anna V. Grasse Simon Tragust Sylvia Cremer 《Proceedings. Biological sciences / The Royal Society》2015,282(1799)
The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. 相似文献
18.
Line V. Ugelvig Daniel J. C. Kronauer Alexandra Schrempf Jürgen Heinze Sylvia Cremer 《Proceedings. Biological sciences / The Royal Society》2010,277(1695):2821-2828
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony. 相似文献
19.
20.
Frank O Aylward Kristin E Burnum Jarrod J Scott Garret Suen Susannah G Tringe Sandra M Adams Kerrie W Barry Carrie D Nicora Paul D Piehowski Samuel O Purvine Gabriel J Starrett Lynne A Goodwin Richard D Smith Mary S Lipton Cameron R Currie 《The ISME journal》2012,6(9):1688-1701
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans. 相似文献