首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of genetic diversity in eukaryotic microbes reflects a synergism between reproductive mode (asexual vs. sexual) and environmental conditions. We determined clonal diversity in field samples of the planktonic marine diatom, Ditylum brightwellii, during a bloom, when cell number increased by seven-fold because of rapid asexual division. The genotypes at three microsatellite loci were determined for 607 individual cell lines isolated during the 11 days of sampling. Genetic diversity remained high during the bloom and 87% of the cells sampled each day were genetically distinct. Sixty-nine clonal lineages were sampled two or more times during the bloom, and two clones were sampled seven times. Based on the frequency of resampled clonal lineages, capture-recapture statistics were used to determine that at least 2400 genetically distinct clonal lineages comprised the bloom population. No significant differences in microsatellite allele frequencies were observed among daily samples indicating that the bloom was comprised of a single population. No sexual stages were observed, although linkage equilibrium at two loci, high levels of allelic and genotypic diversity, and heterozygote deficiencies were all indicative of past sexual reproduction events. At the height of the bloom, a windstorm diluted cell numbers by 51% and coincided with a change in the frequency distribution of some resampled lineages. The extensive clonal diversity generated through past sexual reproduction events coupled with frequent environmental changes appear to prevent individual clonal lineages from becoming numerically dominant, maintaining genetic diversity and the adaptive potential of the population.  相似文献   

2.
The importance of species diversity to emergent, ecological properties of communities is increasingly appreciated, but the importance of within‐species genetic diversity for analogous emergent properties of populations is only just becoming apparent. Here, the properties and effects of genetic variation on predation resistance in populations were assessed and the molecular mechanism underlying these emergent effects was investigated. Using biofilms of the ubiquitous bacterium Serratia marcescens, we tested the importance of genetic diversity in defending biofilms against protozoan grazing, a main source of mortality for bacteria in all natural ecosystems. S. marcescens biofilms established from wild‐type cells produce heritable, stable variants, which when experimentally combined, persist as a diverse assemblage and are significantly more resistant to grazing than either wild type or variant biofilms grown in monoculture. This diversity effect is biofilm‐specific, a result of either facilitation or resource partitioning among variants, with equivalent experiments using planktonic cultures and grazers resulting in dominance by a single resistant strain. The variants studied are all the result of single nucleotide polymorphisms in one regulatory gene suggesting that the benefits of genetic diversity in clonal biofilms can occur through remarkably minimal genetic change. The findings presented here provide a new insight on the integration of genetics and population ecology, in which diversity arising through minimal changes in genotype can have major ecological implications for natural populations.  相似文献   

3.
Many freshwater and marine algal species are described as having cosmopolitan distributions. Whether these widely distributed morphologically similar algae also share a similar gene pool remains often unclear. In the context of island biogeography theory, stronger spatial isolation deemed typical of freshwater lakes should restrict gene flow and lead to higher genetic differentiation among lakes. Using nine microsatellite loci, we investigate the genetic diversity of a widely distributed freshwater planktonic diatom, Asterionella formosa, across different lakes in Switzerland and the Netherlands. We applied a hierarchical spatial sampling design to determine the geographical scale at which populations are structured. A subset of the isolates was additionally analysed using amplified fragment length polymorphism (AFLP) markers. Our results revealed complex and unexpected population structure in A. formosa with evidence for both restricted and moderate to high gene flow at the same time. Different genetic markers (microsatellites and AFLPs) analysed with a variety of multivariate methods consistently revealed that genetic differentiation within lakes was much stronger than among lakes, indicating the presence of cryptic species within A. formosa. We conclude that the hidden diversity found in this study is expected to have implications for the further use of A. formosa in biogeographical, conservation and ecological studies. Further research using species‐level phylogenetic markers is necessary to place the observed differentiation in an evolutionary context of speciation.  相似文献   

4.
5.
Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.  相似文献   

6.
7.
遗传多样性概述   总被引:35,自引:0,他引:35  
遗传多样性作为生物多样性的重要组成部分,是物种多样性、生态系统多样性和景观多样性的基础。随着研究方法和实验技术的发展,遗传多样性研究从形态学水平、细胞学(染色体)水平、生理生化水平逐渐发展到分子水平。形态标记、细胞学标记、等位酶分析、DNA多态性分析等方法,为我们研究遗传多样性提供了有效的工具。特别是DNA多态性分析是一种更为直接而有效的方法。  相似文献   

8.
9.
Monthly species diversity and other components of diversity of diatom samples collected over a period of one year at eight stations in the Linggi River Basin, Malaysia were analysed. Species diversity ranged between 0.52–3.62 bits individua–1. Among the four stations located in the Linggi River (sensu stricto), highest diversity values were recorded at a station polluted by rubber effluent, followed by the stations unpolluted from point sources. Lowest diversity was recorded at a station polluted with urban sewage. At Kundor River, highest diversity was recorded at stations located downstream of rubber and palm oil waste discharges. On the whole, diversity values at unpolluted stations were always lower than at mildly polluted stations. Severe organic loadings caused low diversity by reducing the number of species (species richness) but did not increase the evenness (equitability) as expected when compared with unpolluted or mildly polluted stations. The changes in species diversity can be related to changes in diatom community structure and thereby changes in water quality, but cannot be used as an index of water quality.  相似文献   

10.
European pig genetic diversity: a minireview   总被引:1,自引:0,他引:1  
An evaluation of the European pig diversity has been carried on by several countries, with the support of the European Union over the period of 1994 to 2000. This article presents an overview of the results of this investigation, focussing on two genetic marker techniques, namely microsatellites (MS) and amplification of fragment length polymorphism (AFLP). Nearly 200 loci were characterised on about 50 individuals from each of 59 to 71 breeds, according to the marker considered. The analysis of diversity, based on genetic distances, led to similar conclusions for the two marker types (MS and AFLP), in spite of a markedly lower total diversity of AFLP compared to MS. The analysis of the MS loci showed that the allelic diversity pattern among breeds was quasi-independent from the diversity pattern based on allele frequencies. Genetic distances showed no particular clustering of local with international breeds, confirming the genetic uniqueness of the European local breeds compared to mainstream international breeds. The taxonomy of the local breeds revealed a cluster of the Iberian type breeds, in contrast with a wider dispersal of the breeds from other countries. Phylogeny often disagreed with documented breeds' history, showing the complex migration/admixture patterns which underlie the breeds' relationships. Methodologies developed in this investigation as well as the database and the DNA depository created should provide support for further innovative research in the field of domestic animal diversity management.  相似文献   

11.
Sea otters, Enhydra lutris, were once abundant along the nearshore areas of the North Pacific. The international maritime fur trade that ended in 1911 left 13 small remnant populations with low genetic diversity. Subsequent translocations into previously occupied habitat resulted in several reintroduced populations along the coast of North America. We sampled sea otters between 2008 and 2011 throughout much of their current range and used 19 nuclear microsatellite markers to evaluate genetic diversity, population structure, and connectivity between remnant and reintroduced populations. Average genetic diversity within populations was similar: observed heterozygosity 0.55 and 0.53, expected heterozygosity 0.56 and 0.52, unbiased expected heterozygosity 0.57 and 0.52, for reintroduced and remnant populations, respectively. Sea otter population structure was greatest between the Northern and Southern sea otters with further structuring in Northern sea otters into Western, Central, and Southeast populations (including the reintroduced populations). Migrant analyses suggest the successful reintroductions and growth of remnant groups have enhanced connectivity and gene flow between populations throughout many of the sampled Northern populations. We recommend that future management actions for the Southern sea otter focus on future reintroductions to fill the gap between the California and Washington populations ultimately restoring gene flow to the isolated California population.  相似文献   

12.
Population structure of many marine organisms is spatially patchy and varies within and between years, a phenomenon defined as chaotic genetic patchiness. This results from the combination of planktonic larval dispersal and environmental stochasticity. Additionally, in species with bi‐partite life, postsettlement selection can magnify these genetic differences. The high fecundity (up to 500,000 eggs annually) and protracted larval duration (12–24 months) and dispersal of the southern rock lobster, Jasus edwardsii, make it a good test species for chaotic genetic patchiness and selection during early benthic life. Here, we used double digest restriction site‐associated DNA sequencing (ddRADseq) to investigate chaotic genetic patchiness and postsettlement selection in this species. We assessed differences in genetic structure and diversity of recently settled pueruli across four settlement years and between two sites in southeast Australia separated by approximately 1,000 km. Postsettlement selection was investigated by identifying loci under putative positive selection between recently settled pueruli and postpueruli and quantifying differences in the magnitude and strength of the selection at each year and site. Genetic differences within and among sites through time in neutral SNP markers indicated chaotic genetic patchiness. Recently settled puerulus at the southernmost site exhibited lower genetic diversity during years of low puerulus catches, further supporting this hypothesis. Finally, analyses of outlier SNPs detected fluctuations in the magnitude and strength of the markers putatively under positive selection over space and time. One locus under putative positive selection was consistent at both locations during the same years, suggesting the existence of weak postsettlement selection.  相似文献   

13.
DNA遗传标记在山羊遗传多样性研究上的应用   总被引:1,自引:0,他引:1  
综述DNA遗传标记在山羊的遗传多样性分析上的应用,并分别叙述了RFLP、线粒体DNA多态性、RAID、微卫星标记、AFLP等几个方面目前在山羊上的研究。  相似文献   

14.
苔藓植物遗传多样性研究现状   总被引:4,自引:0,他引:4  
张晗  沙伟  高永超 《生态学杂志》2004,23(4):122-126
苔藓植物具有丰富的遗传多样性 ,本文分别从形态学、细胞学、生化水平和分子水平阐述其遗传多样性的研究现状。  相似文献   

15.
不同种群海南粗榧(Cephalotaxus mannii)遗传多样性研究   总被引:1,自引:0,他引:1  
采用垂直板型凝胶电泳技术 ,对海南粗榧 5个种群的遗传多样性进行了研究 ,结果表明 :海南粗榧遗传多样性水平低 ,多态位点比率 P=0 .3 3 ,等位基因平均数 A=1 .3 3 ,平均期望杂合度为 He=0 .1 3 5 ,观察杂合度 Ho=0 .1 3 9,黎母山种群所具有的相对丰富的遗传多样性使其成为保护和科研的重点  相似文献   

16.
We examined the spatial and temporal variation of species diversity and genetic diversity in a metacommunity comprising 16 species of freshwater gastropods. We monitored species abundance at five localities of the Ain river floodplain in southeastern France, over a period of four years. Using 190 AFLP loci, we monitored the genetic diversity of Radix balthica , one of the most abundant gastropod species of the metacommunity, twice during that period. An exceptionally intense drought occurred during the last two years and differentially affected the study sites. This allowed us to test the effect of natural disturbances on changes in both genetic and species diversity. Overall, local (alpha) diversity declined as reflected by lower values of gene diversity H S and evenness. In parallel, the among-sites (beta) diversity increased at both the genetic ( F ST) and species ( F STC) levels. These results suggest that disturbances can lead to similar changes in genetic and community structure through the combined effects of selective and neutral processes.  相似文献   

17.
Adaptation for invasiveness should comprise the capability to exploit and prosper in a wide range of ecological conditions and is therefore expected to be associated with a certain level of genetic diversity. Paradoxically, however, invasive populations are established by only a few founders, resulting in low genetic diversity. As a conceivable way of attaining high genetic diversity and high variance of gene expression even when a small number of founders is involved in invasiveness, I suggest here chimerism, a fusion between different individuals—a common phenomenon found in numerous phyla. The composite entity offers the chimeric organism genetic flexibility and higher inclusive fitness that depends on the joint genomic fitness of the original partners. The ability to form a chimeric entity is also applied to subsequent generations, and consequently, the level of genetic diversity does not decline over generations of population establishment following invasion.  相似文献   

18.
19.
20.
棉花遗传多态性研究进展   总被引:4,自引:0,他引:4  
从系谱分析、形态特征、生化及 DNA分子水平等方面分析了棉花遗传多样性的研究进展 .国内外的研究一致表明陆地棉品种间遗传多态性水平低 ,改进其遗传多样性是今后棉花遗传育种研究的重要内容 .加强对现有栽培品种、野生种质的研究利用和种质引进交流 ,多种育种技术综合运用和合理的植棉区域规划及多育种目标引导 ,是提高育成品种遗传多样性的重要途径 .并提出今后应加强棉花核心种质的研究和从基因组水平对棉花遗传多样性的研究  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号