首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene initiates important aspects of plant growth and development through disulfide-linked receptor dimers located in the endoplasmic reticulum. The receptors feature a small transmembrane, ethylene binding domain followed by a large cytosolic domain, which serves as a scaffold for the assembly of large molecular weight complexes of different ethylene receptors and other cellular participants of the ethylene signaling pathway. Here we report the crystallographic structures of the ethylene receptor 1 (ETR1) catalytic ATP-binding and the ethylene response sensor 1 dimerization histidine phosphotransfer (DHp) domains and the solution structure of the entire cytosolic domain of ETR1, all from Arabidopsis thaliana. The isolated dimeric ethylene response sensor 1 DHp domain is asymmetric, the result of different helical bending angles close to the conserved His residue. The structures of the catalytic ATP-binding, DHp, and receiver domains of ethylene receptors and of a homologous, but dissimilar, GAF domain were refined against experimental small angle x-ray scattering data, leading to a structural model of the entire cytosolic domain of the ethylene receptor 1. The model illustrates that the cytosolic domain is shaped like a dumbbell and that the receiver domain is flexible and assumes a position different from those observed in prokaryotic histidine kinases. Furthermore the cytosolic domain of ETR1 plays a key role, interacting with all other receptors and several participants of the ethylene signaling pathway. Our model, therefore, provides the first step toward a detailed understanding of the molecular mechanics of this important signal transduction process in plants.  相似文献   

2.
The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.  相似文献   

3.
Adam33 is a putative asthma susceptibility gene encoding for a membrane-anchored metalloprotease belonging to the ADAM family. The ADAMs (a disintegrin and metalloprotease) are a family of glycoproteins implicated in cell-cell interactions, cell fusion, and cell signaling. We have determined the crystal structure of the Adam33 catalytic domain in complex with the inhibitor marimastat and the inhibitor-free form. The structures reveal the polypeptide fold and active site environment resembling that of other metalloproteases. The substrate-binding site contains unique features that allow the structure-based design of specific inhibitors of this enzyme.  相似文献   

4.
Methyl-CpG (mCpG) binding domain protein 4 (MBD4) is a member of mammalian DNA glycosylase superfamily. It contains an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain, which is an important molecule believed to be involved in maintaining of genome stability. Herein, we determined the crystal structure of C-terminal glycosylase domain of human MBD4. And the structural alignments of other helix-hairpin-helix (HhH) DNA glycosylases show that the human MBD4 glycosylase domain has the similar active site and the catalytic mechanisms as others. But the different residues in the N-terminal of domain result in the change of charge distribution on the surface of the protein, which suggest the different roles that may relate some diseases.  相似文献   

5.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during activation and cellular signaling. The major alternative splice product of RAGE comprises its extracellular region that occurs as a soluble protein (sRAGE). Although the structures of sRAGE domains were available, their assembly into the functional full-length protein remained unknown. We observed that the protein has concentration-dependent oligomerization behavior, and this is also mediated by the presence of Ca(2+) ions. Moreover, using synchrotron small angle x-ray scattering, the solution structure of human sRAGE was determined in the monomeric and dimeric forms. The model for the monomer displays a J-like shape, whereas the dimer is formed through the association of the two N-terminal domains and has an elongated structure. These results provide insights into the assembly of the RAGE homodimer, which is essential for signal transduction, and the sRAGE:RAGE heterodimer that leads to blockage of the receptor signaling, paving the way for the design of therapeutic strategies for a large number of different pathologies.  相似文献   

6.
CCR4, an evolutionarily conserved member of the CCR4–NOT complex, is the main cytoplasmic deadenylase. It contains a C‐terminal nuclease domain with homology to the endonuclease‐exonuclease‐phosphatase (EEP) family of enzymes. We have determined the high‐resolution three‐dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X‐ray crystallography using the single‐wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete α/β sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg2+‐dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.  相似文献   

7.
The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric β-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.  相似文献   

8.
Crystal structure of phosphodiesterase 4D and inhibitor complex(1)   总被引:3,自引:0,他引:3  
Lee ME  Markowitz J  Lee JO  Lee H 《FEBS letters》2002,530(1-3):53-58
Cyclic nucleotide phosphodiesterases (PDEs) regulate physiological processes by degrading intracellular second messengers, adenosine-3′,5′-cyclic phosphate or guanosine-3′,5′-cyclic phosphate. The first crystal structure of PDE4D catalytic domain and a bound inhibitor, zardaverine, was determined. Zardaverine binds to a highly conserved pocket that includes the catalytic metal binding site. Zardaverine fills only a portion of the active site pocket. More selective PDE4 inhibitors including rolipram, cilomilast and roflumilast have additional functional groups that can utilize the remaining empty space for increased binding energy and selectivity. In the crystal structure, the catalytic domain of PDE4D possesses an extensive dimerization interface containing residues that are highly conserved in PDE1, 3, 4, 8 and 9. Mutations of R358D or D322R among these interface residues prohibit dimerization of the PDE4D catalytic domain in solution.  相似文献   

9.
The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(H2mthpy)Cl2](CH3C6H4SO3), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (1H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group (Z = 2). The ONSCl2 geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (τ = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm−1 and g = 2.078(3).  相似文献   

10.
Selenocysteine (Sec), the 21st amino acid, is synthesized from a serine precursor in a series of reactions that require selenocysteine tRNA (tRNASec). In archaea and eukaryotes, O-phosphoseryl-tRNASec:selenocysteinyl-tRNASec synthase (SepSecS) catalyzes the terminal synthetic reaction during which the phosphoseryl intermediate is converted into the selenocysteinyl moiety while being attached to tRNASec. We have previously shown that only the SepSecS tetramer is capable of binding to and recognizing the distinct fold of tRNASec. Because only two of the four tRNA-binding sites were occupied in the crystal form, a question was raised regarding whether the observed arrangement and architecture faithfully recapitulated the physiologically relevant ribonucleoprotein complex important for selenoprotein formation. Herein, we determined the stoichiometry of the human terminal synthetic complex of selenocysteine by using small angle x-ray scattering, multi-angle light scattering, and analytical ultracentrifugation. In addition, we provided the first estimate of the ratio between SepSecS and tRNASec in vivo. We show that SepSecS preferentially binds one or two tRNASec molecules at a time and that the enzyme is present in large molar excess over the substrate tRNA in vivo. Moreover, we show that in a complex between SepSecS and two tRNAs, one enzyme homodimer plays a role of the noncatalytic unit that positions CCA ends of two tRNASec molecules into the active site grooves of the other, catalytic, homodimer. Finally, our results demonstrate that the previously determined crystal structure represents the physiologically and catalytically relevant complex and suggest that allosteric regulation of SepSecS might play an important role in regulation of selenocysteine and selenoprotein synthesis.  相似文献   

11.
Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.  相似文献   

12.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

13.
Ubiquitin C-terminal hydrolases (UCHs) are one of five sub-families of de-ubiquitinating enzymes (DUBs) that hydrolyze the C-terminal peptide bond of ubiquitin. UCH37 (also called UCH-L5) is the only UCH family protease that interacts with the 19S proteasome regulatory complex and disassembles Lys48-linked poly-ubiquitin from the distal end of the chain. The structures of three UCHs, UCH-L1, UCH-L3, and YUH1, have been determined by X-ray crystallography. However, little is known about their physiological substrates. These enzymes do not hydrolyze large adducts of ubiquitin such as proteins. To identify and characterize the hydrolytic specificities of their substrates, the crystal structure of the UCH37 catalytic domain (UCH-domain) was determined and compared with that of the other UCHs. The overall folding patterns are similar in these UCHs. However, helix-3 is collapsed in UCH37 and the pattern of electrostatic potential on the surface of the putative substrate-binding site (P′-site) is different. Helix-3 comprises an edge of the P′-site. As a result, the P′-site is wider than that in other UCHs. These differences indicate that UCH37 can interact with larger adducts such as ubiquitin.  相似文献   

14.
A tetranuclear copper(II) complex [Cu4L2(CH3COO)2(OH)2]·6H2O, in which L stands for the dianion of N-(3-carboxylsalicylidene)-4-(2-iminoethyl)morpholine, was synthesized and characterized by elemental analysis, IR, UV-Vis, TGA and X-ray single crystal diffraction. The crystal structure shows that the coordination unit is centrosymmetric with all the Cu(II) ions in square pyramidal coordination geometry. The coordination unit consists of two equivalent parts [Cu2L(CH3COO)(OH)], each containing two Cu(II) ions, a tetradentate N2O2 Schiff base dianion L2−, a CH3COO, and a OH anion. In [Cu2L(CH3COO)(OH)], the six coordination atoms (N2O4) are nearly coplanar, with Cu(1) and Cu(2) enchased in between; the phenolate oxygen and the OH oxygen as bridging atoms bind the two Cu(II) ions in close proximity; both O4 around Cu(1) and N2O2 around Cu(2) form the basal plane of the coordination square pyramids. The two parts are connected by sharing two μ3-OH oxygens and two μ2-CH3COO oxygens from each other, forming four edge-sharing coordination square pyramids around the four Cu(II) ions. A 3D network is formed through hydrogen bonding along a and c axis, and π-π interaction along b axis.  相似文献   

15.
Reaction of Cu(ClO4)2 · 6H2O and pyrazine 2,3-dicarboxylate (pzdc) in aqueous ammonia medium results [Cu(pyrazine 2,3-dicarboxylate)(H2O)2] · H2O (1). The X-ray single crystal structure reveals that the compound is a 1D polymeric sinusoidal infinite chain which through intra- and inter-molecular hydrogen bonding interactions, involving lattice and coordinated water molecules with dicarboxylate oxygens and pyrazine nitrogens, gives rise to a 3D architecture. The variable temperature magnetic measurements show weak antiferromagnetic interactions between the Cu(II) centers. The best fit parameters through the typical equation for a uniform copper (II) chain are: J=−0.25 cm−1, g=2.17, R=1.3×10−6. The EPR spectrum does not alter with temperature (from r.t. to 4 K). The spectra are typical for square-pyramidal geometry of copper(II) ions, g=2.24 and g=2.10 (average g=2.15, in good agreement to the value obtained by susceptibility fit).  相似文献   

16.
17.
The preparation and structural characterization of a new copper(II) complex of the polyether ionophorous antibiotic sodium monensin A (MonNa) are described. Sodium monensin A binds Cu(II) to produce a heterometallic complex of composition [Cu(MonNa)2Cl2]·H2O, 1. The crystallographic data of 1 show that the complex crystallizes in monoclinic space group C2 with Cu(II) ion adopting a distorted square-planar geometry. Copper(II) coordinates two anionic sodium monensin ligands and two chloride anions producing a neutral compound. The sodium ion remains in the inner cavity of the ligand retaining its sixfold coordination with oxygen atoms. Replacement of crystallization water by acetonitrile is observed in the crystal structure of the complex 1. Copper(I) salt of the methyl ester of MonNa, 2, was identified by X-ray crystallography as a side product of the reaction of MonNa with Cu(II). Compound 2, [Me-MonNa][H-MonNa][CuCl2]Cl, crystallizes in monoclinic space group C2 with the same coordination pattern of the sodium cation but contains a chlorocuprate(I) counter [CuCl2], which is linear and not coordinated by sodium monensin A. The antibacterial and antioxidant properties as two independent activities of 1 were studied. Compound 1 is effective against aerobic Gram(+)-microorganisms Bacillus subtilis, Bacillus mycoides and Sarcina lutea. Complex 1 shows SOD-like activity comparable with that of the copper(II) ion.  相似文献   

18.
Prolyl 4-hydroxylases (P4Hs) are members of the Fe2+ and 2-oxoglutarate- dependent oxygenases family, which play central roles in the collagen stabilization, hypoxia sensing, and translational regulation in eukaryotes. Thus far, nothing is known about the role of P4Hs in development and pathogenesis in oomycetes. Here we show that the Phytophthora capsici genome contains five putative prolyl 4-hydroxylases. In mycelia, all P4Hs were downregulated in response to hypoxia, but the expression of PcP4H1 was most affected. Strikingly, Pc4H1 was upregulated more than 110 fold at the onset of infection, and Pc4H5 was upregulated seven fold, while the expression of other P4H's were unchanged. Similar to well-characterized P4H proteins, the crystallographic structure of PcP4H1 contains a highly conserved double-stranded β-helix core fold and catalytic residues. However, the binding affinity of 2-oxoglutarate to PcP4H1 is very low. The extended C-terminal α-helix bundle and longer β2-β3 disordered substrate binding loop may help in confirming the peptide target of this enzyme.  相似文献   

19.
The structures of new compounds containing Zn(II) ions and bpp (1,3-bis(4-pyridyl)propane) ligands have been determined. The coordinating halides (Br or Cl) produce one-dimensional compounds 6 and 7, and intra- and inter-chain CH?X (X = Br or I) interactions play roles for building crystal structures with the flexible bpp ligands. The non-coordinating anions do not produce hydroxyl bridged zinc cations or polymeric compounds, and produce only a monomeric complex 4 containing four bpp ligands and two water ligands. Previously reported polymeric compounds 1 and 2 containing hydroxyl-bridged zinc cations [Zn2OH] were found to carry out the catalytic transesterification of a range of esters with methanol at room temperature under the mild conditions, whereas the rest of compounds did not catalyze the transesterification reactions at all. In addition, the catalysts 1 and 2 have shown even better catalytic activity than zinc salts Zn(NO3)2 and Zn(OTf)2.  相似文献   

20.
BAG6 is an essential protein that functions in two distinct biological pathways, ubiquitin-mediated protein degradation of defective polypeptides and tail-anchored (TA) transmembrane protein biogenesis in mammals, although its structural and functional properties remain unknown. We solved a crystal structure of the C-terminal heterodimerization domains of BAG6 and Ubl4a and characterized their interaction biochemically. Unexpectedly, the specificity and structure of the C terminus of BAG6, which was previously classified as a BAG domain, were completely distinct from those of the canonical BAG domain. Furthermore, the tight association of BAG6 and Ubl4a resulted in modulation of Ubl4a protein stability in cells. Therefore, we propose to designate the Ubl4a-binding region of BAG6 as the novel BAG-similar (BAGS) domain. The structure of Ubl4a, which interacts with BAG6, is similar to the yeast homologue Get5, which forms a homodimer. These observations indicate that the BAGS domain of BAG6 promotes the TA protein biogenesis pathway in mammals by the interaction with Ubl4a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号