共查询到19条相似文献,搜索用时 15 毫秒
1.
Pain and pain modulation has been viewed as being mediated entirely by neurons. However, new research implicates spinal cord
glia as key players in the creation and maintenance of pathological pain. Sciatic nerve lesions are one of the most commonly
studied pain-related injuries. In our study we aimed to characterize changes in microglial activation in the rat spinal cord
after axotomy and chronic constriction injury of the sciatic nerve and to evaluate this activation in regard to pain behavior
in injured and control groups of rats. Microglial activation was observed at ipsilateral side of lumbar spinal cord in all
experimental groups. There were slight differences in the level and extent of microglial activation between nerve injury models
used, however, differences were clear between nerve-injured and sham animals in accordance with different level of pain behavior
in these groups. It is known that activated microglia release various chemical mediators that can excite pain-responsive neurons.
Robust microglial activation observed in present study could therefore contribute to pathological pain states observed following
nerve injury. 相似文献
2.
创伤性颅脑损伤后外周血清中神经元特异性烯醇化酶(NSE)和神经生长因子(NGF)含量呈动态变化,在颅脑损伤(尤其是重型颅脑损伤)早期即可出现表达增加,其中NSE含量与颅脑损伤程度呈正相关,而NGF在颅脑损伤后的神经修复、再生和神经元保护等机制中起重要作用,其在血清中含量变化的临床意义明显不同。两者在血清中含量变化对于颅脑损伤后病情、治疗及预后评估有重要的作用,是颅脑损伤后评估病情、进行治疗的重要指标,因此监测血清中NSE及NGF的变化,可以为更准确判断病情、评估预后,并为临床治疗提供依据。本文就其在颅脑损伤患者血清中的含量变化及临床意义作以简要综述。 相似文献
3.
The effect of partial and complete spinal cord transection (Th7–Th8) on locomotor activity evoked in decerebrated cats by electrical epidural stimulation (segment L5, 80–100 μA, 0.5 ms at 5 Hz) has been investigated. Transection of dorsal columns did not substantially influence the locomotion. Disruption of the ventral spinal quadrant resulted in deterioration and instability of the locomotor rhythm. Injury to lateral or medial descending motor systems led to redistribution of the tone in antagonist muscles. Locomotion could be evoked by epidural stimulation within 20 h after complete transection of the spinal cord. The restoration of polysynaptic components in EMG responses correlated with recovery of the stepping function. The data obtained confirm that initiation of locomotion under epidural stimulation is caused by direct action on intraspinal systems responsible for locomotor regulation. With intact or partially injured spinal cord, this effect is under the influence of supraspinal motor systems correcting and stabilizing the evoked locomotor pattern. 相似文献
4.
Arandjelovic S Dragojlovic N Li X Myers RR Campana WM Gonias SL 《Journal of neurochemistry》2007,103(2):694-705
Peripheral nerve injury induces endoneural inflammation, controlled by diverse cytokines and extracellular mediators. Although inflammation is coupled to axonal regeneration, fulminant inflammation may increase nerve damage and neuropathic pain. alpha(2)-Macroglobulin (alpha2M) is a plasma protease inhibitor, cytokine carrier, and ligand for cell-signaling receptors, which exists in two well-characterized conformations and in less well-characterized intermediate states. Previously, we generated an alpha2M derivative (alpha(2)-macroglobulin activated for cytokine binding; MAC) similar in structure to alpha(2)M conformational intermediates, which binds tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), and inhibits endotoxin toxicity. In this study, we report that the continuum of cytokines that bind to MAC includes IL-6 and IL-18. MAC inhibited TNF-alpha-induced p38 mitogen-activated protein kinase activation and cell death in cultured Schwann cells. When administered by i.p. injection to mice with sciatic nerve crush injury, MAC decreased inflammation and preserved axons. Macrophage infiltration and TNF-alpha expression also are decreased. MAC inhibited TNF-alpha expression in the chronic constriction injury model of nerve injury. When MAC was prepared using a mutated recombinant alpha2M, which does not bind to the alpha2M receptor, low-density lipoprotein receptor-related protein-1, activity in the chronic constriction injury model was blocked. These studies demonstrate that an alpha2M derivative is capable of regulating the response to peripheral nerve injury by a mechanism that requires low-density lipoprotein receptor-related protein-1. 相似文献
5.
The present study provides an important implication for the management of chronic neuropathic pain, focusing on prostaglandin (PG) and nitric oxide (NO) in the spinal cord. To determine if spinally administered cyclooxygenase (COX) inhibitor or nitric oxide synthase (NOS) inhibitor had preemptive analgesia on thermal hypersensitivity induced by chronic constrictive nerve injury, Sprague-Dawley rats were chronically implanted with an intrathecal (i.t.) catheter. The left sciatic nerve was loosely ligated with 2-mm polyethylene tubing to produce painful mononeuropathy. Animals received tenoxicam (7.5, 15 or 30 micromol/10 microl, i.t.), NS-398 (15 or 30 micromol), or L-NAME (30, 150 or 300 micromol) immediately before the nerve injury, followed by daily injection extending into the four postoperative days. The hindpaw was immersed into a hot (42 degrees C, 44 degrees C and 46 degrees C) or cold (10 degrees C) water bath. The paw immersion test revealed significant thermal hyperalgesia and allodynia 5 day after nerve injury in vehicle control animals. Tenoxicam (7.5, 15 or 30 micromol) or L-NAME (30, 150 or 300 micromol) dose-dependently attenuated hyperalgesia and allodynia. Equimolar dose of NS-398 (15 or 30 micromol) also diminished these nociceptive behaviors. Higher dose of either drug primarily produced longer duration of inhibition. The inhibitory effect of tenoxicam (30 micromol) on hyperalgesia was more effective than that of an equimolar dose of NS-398 or L-NAME. These results demonstrated that intrathecally administered COX inhibitor or NOS inhibitor provides preemptive analgesia on thermal hypersensitivity following chronic constrictive nerve injury in rats. 相似文献
6.
Shakhbazau A Martinez JA Xu QG Kawasoe J van Minnen J Midha R 《Journal of neurochemistry》2012,122(3):501-511
Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2?weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2?weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve. 相似文献
7.
The combination of dietary sodium depletion and unilateral chorda tympani (CT) nerve section decreases sodium taste function in the intact CT nerve. However, functional changes have not been examined prior to day 4 postsectioning, even though degenerative and inflammatory responses are robust during that period. Rats received unilateral CT section and/or dietary sodium depletion, accomplished by 2 injections of furosemide and a sodium-restricted diet, on day 0. Surgical controls received sham nerve sectioning. At days 1, 2, 3, or 4, taste responses were recorded from the intact nerve. Functional changes were rapid and unexpected. At day 1 postsectioning, neural responses from the uninjured CT of both control-fed and sodium-depleted animals were reduced. By day 2, however, normal function was restored in control-fed rats, whereas functional deficits persisted in depleted animals. Sodium depletion alone also induced a transient decrease in sodium responses at days 2-3 after furosemide injection. These results demonstrate that distant neural injury can elicit gustatory plasticity regardless of the dietary environment, but normal responses can be restored. We suggest that neutrophils mediate the initial postinjury deficits in taste function, whereas macrophages promote the recovery of normal function. 相似文献
8.
Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury 总被引:5,自引:0,他引:5
Cheng H Huang YC Chang PT Huang YY 《Biochemical and biophysical research communications》2007,357(4):938-944
To better direct the repair of damaged axons following spinal cord injury (SCI), we designed a nerve conduit (NC) modeled after the intact spinal cord, which would enable the axons to cross the lesioned area to rejoin on the other side. The NC consisted of a porous chitosan scaffold and was incorporated with laminin (LN) on the inner surface through oxygen plasma treatment. According to the BBB, CBS, and treadmill analyses, we found that following the implantation of the laminin-coated NC (LN-NC) the rats showed a tendency towards behavior improvement and functional recovery. Histology and immunocytochemical analyses indicated that the NC groups were capable of leading the damaged axons through the lesioned area without triggering inflammation or apoptosis. Together with the significantly enhanced expression of local GAP-43 in the LN-NC groups, as evidenced by western blot analysis, axon re-growth mediated by LN-NC was found to compare better than that by NC group. These results suggest a new possible approach to repairing SCI and, in general, a model which will be useful for other multidisciplinary procedures for complex neurological situations. 相似文献
9.
Hisanori Hirakawa Seiichiro Okajima Takanori Nagaoka Tetsuro Takamatsu Masahito Oyamada 《Experimental cell research》2003,284(2):194-208
The blood–nerve barrier in peripheral nerves is important for maintaining the environment for axons. Breakdown of the barrier by nerve injury causes various pathologies. We hypothesized that the breakdown and recovery of the blood–nerve barrier after injury are associated with the changes in the expression of intercellular junctional proteins. To test this hypothesis, we induced crush injuries in the rat sciatic nerve by ligation and analyzed spatiotemporal changes of claudin-1, claudin-5, occludin, VE-cadherin, and connexin43 by immunoconfocal microscopy and morphometry and compared them with changes in the permeability of the blood–nerve barrier by intravenous and local administration of Evans blue–albumin (EBA). On day 1 after removal of the ligature EBA leaked into the connective tissue in the endoneurium and then the leakage gradually decreased and disappeared on day 7. On day 1 claudin-1, claudin-5, occludin, VE-cadherin, and connexin43 had totally disappeared from the perineurium and endoneurium. Thereafter, claudin-1, claudin-5, occludin, and VE-cadherin recovered from day 2, whereas connexin43 was redetected on day 5. These results indicate that the breakdown and following recovery of the blood–nerve barrier are closely associated with changes in the expression of claudins, occludin, VE-cadherin, and connexin43 and that the recovery time course is similar but nonidentical. 相似文献
10.
Soledad Gaitán Elvira Cuenllas Pilar Sancho Juan A. Bueren Concepción Tejero 《Bioscience reports》1992,12(4):281-292
This paper analyzes the long-term (6 and 12 months) function of mouse granulocytes after total body irradiation with a single dose (5 Gy) of X-rays. Superoxide anion production has been investigated in granulocytes from peripheral blood, and also in those harvested from long term bone marrow cultures, with the aim of correlating the environmental damage induced by radiation with the functional properties of granulocytes. Anin vivo andin vitro enhancement of superoxide anion production and protein levels in granulocytes from irradiated mice is described. The presence of some colony stimulating factor in the supernatant of cultures from irradiated mice could play an important role in the priming of granulocytes. 相似文献
11.
人脑对不同频率穴位电刺激反应的功能性磁共振成像 总被引:33,自引:0,他引:33
利用功能性磁共振方法研究人脑对不同频率穴位体表电刺激(transcutaneous electric nerve stimulation,TENS)的反应。实验对11名志愿得进行了22次脑部功能性磁共振成像。成像过程中,每名志愿者分别接受了2和100HzTENS刺激,刺激部位为左腿足三里和三阴交穴,结果为不同频率TENS都激活了初级和次级躯体感觉区,频率特异性的激活信号出现在与运动相关的区域、丘脑、边缘系统和联络皮层。结果显示,在相同穴位给予不同频率的TENS要以在大脑引起不同的反应,提示2和100HzTENS可能激活了不同的神经通路,这些神经通路分别在中枢神经系统起着不同的作用。 相似文献
12.
Neuron-glia communication: metallothionein expression is specifically up-regulated by astrocytes in response to neuronal injury 总被引:4,自引:0,他引:4
Chung RS Adlard PA Dittmann J Vickers JC Chuah MI West AK 《Journal of neurochemistry》2004,88(2):454-461
Recent data suggests that metallothioneins (MTs) are major neuroprotective proteins within the CNS. In this regard, we have recently demonstrated that MT-IIA (the major human MT-I/-II isoform) promotes neural recovery following focal cortical brain injury. To further investigate the role of MTs in cortical brain injury, MT-I/-II expression was examined in several different experimental models of cortical neuron injury. While MT-I/-II immunoreactivity was not detectable in the uninjured rat neocortex, by 4 days, following a focal cortical brain injury, MT-I/-II was found in astrocytes aligned along the injury site. At latter time points, astrocytes, at a distance up to several hundred microns from the original injury tract, were MT-I/-II immunoreactive. Induced MT-I/-II was found both within the cell body and processes. Using a cortical neuron/astrocyte co-culture model, we observed a similar MT-I/-II response following in vitro injury. Intriguingly, scratch wound injury in pure astrocyte cultures resulted in no change in MT-I/-II expression. This suggests that MT induction was specifically elicited by neuronal injury. Based upon recent reports indicating that MT-I/-II are major neuroprotective proteins within the brain, our results provide further evidence that MT-I/-II plays an important role in the cellular response to neuronal injury. 相似文献
13.
目的:研究油酸(OA)致大鼠急性肺损伤(ALI)时,P-选择素(Ps)、细胞间粘附分子-1(ICAM-1)和核因子-κB(NF-KB)在肺组织中的表达及褪黑素(MT)对肺组织的保护作用及其机制。方法:将48只SD大鼠随机分为4组(n=12),对照组(Control)、油酸组(OA)、MT+OA组,SB203580+OA组。采用尾静脉注射油酸的方法建立大鼠Au的模型,测定肺系数,光镜下观察大鼠肺组织形态学改变,并通过免疫组织化学染色技术观察肺组织中Ps、ICAM-1和NF-κB的表达变化。结果:与control组相比,OA组大鼠肺系数明显升高(P〈0.05);肺组织损伤严重,肺泡间隔明显增宽,肺泡腔及肺间质弥漫性炎细胞浸润;Ps、ICAM-1和NF-κB的阳性表达信号明显增强(P〈0.05);应用MT和SB203580均显著缓解上述变化(P〈0.05)。结论:MT对ALI时的肺组织起明显的保护作用,其保护机制可能与抑制Ps、ICAM-1和NF-κB的表达有关。 相似文献
14.
Y. Zhang Q. Liu H. Duan J. Cheng S. Jiang X. Huang S. Leng F. He Y. Zheng 《Biomarkers》2006,11(1):61-69
Chronic exposure to n-hexane may result in peripheral neuropathy. 2,5-Hexanedione (2,5-HD) has been identified as a toxic metabolite of n-hexane. The CYP2E1, CYP1A1 and GST genes are involved in the formation of 2,5-hexanedione from n-hexane as well as the elimination of 2,5-HD-formed electrophile, and these genes are highly polymorphic in the general population. A nested case-control study in an industrial cohort was conducted to evaluate the associations between polymorphisms in these metabolic genes and n-hexane-induced peripheral nerve damage. The study subjects included 22 cases, who worked in a printing factory with symptoms of peripheral nerve damage, and 163 controls, who came from the same factory of cases. DNA was extracted from blood samples and genotyping was conducted for CYP2E1 Pst, CYP2E1 Dra, CYP2E1 Ins96, CYP1A1 Msp, GSTT1 null, GSTM1 null and GSTP1 105V. Unconditional logistic regression was applied to estimate the odds ratio and 95% confidence intervals. There were no significant differences between the two groups regarding age, sex, smoking and alcohol status. A significant association between Dra polymorphism and peripheral nerve damage was found. The frequency of CYP2E1 Dra homozygous mutation in the case group (18.2%) was higher than that in the control group (3.7%, p=0.015). Individuals with homozygote genotype (CC) of CYP2E1 Dra had a significantly higher risk of peripheral nerve damage compared with those with DD genotype (adjusted OR = 5.58, 95% CI = 1.32-23.65) after n-hexane exposure duration, sex, age, smoking and alcohol status were adjusted. No significant association was found that CYP2E1 Pst, CYP2E1 Ins96, CYP1A1 Msp, GSTT1, GSTM1, GSTP gene polymorphisms associated with the susceptibility of peripheral nerve damage. These findings suggested that CYP2E1 gene might increase the susceptibility to n-hexane-induced peripheral damage. 相似文献
15.
AbstractChronic exposure to n-hexane may result in peripheral neuropathy. 2,5-Hexanedione (2,5-HD) has been identified as a toxic metabolite of n-hexane. The CYP2E1, CYP1A1 and GST genes are involved in the formation of 2,5-hexanedione from n-hexane as well as the elimination of 2,5-HD-formed electrophile, and these genes are highly polymorphic in the general population. A nested case-control study in an industrial cohort was conducted to evaluate the associations between polymorphisms in these metabolic genes and n-hexane-induced peripheral nerve damage. The study subjects included 22 cases, who worked in a printing factory with symptoms of peripheral nerve damage, and 163 controls, who came from the same factory of cases. DNA was extracted from blood samples and genotyping was conducted for CYP2E1 Pst, CYP2E1 Dra, CYP2E1 Ins96, CYP1A1 Msp, GSTT1 null, GSTM1 null and GSTP1 105V. Unconditional logistic regression was applied to estimate the odds ratio and 95% confidence intervals. There were no significant differences between the two groups regarding age, sex, smoking and alcohol status. A significant association between Dra polymorphism and peripheral nerve damage was found. The frequency of CYP2E1 Dra homozygous mutation in the case group (18.2%) was higher than that in the control group (3.7%, p=0.015). Individuals with homozygote genotype (CC) of CYP2E1 Dra had a significantly higher risk of peripheral nerve damage compared with those with DD genotype (adjusted OR?=?5.58, 95% CI?=?1.32–23.65) after n-hexane exposure duration, sex, age, smoking and alcohol status were adjusted. No significant association was found that CYP2E1 Pst, CYP2E1 Ins96, CYP1A1 Msp, GSTT1, GSTM1, GSTP gene polymorphisms associated with the susceptibility of peripheral nerve damage. These findings suggested that CYP2E1 gene might increase the susceptibility to n-hexane-induced peripheral damage. 相似文献
16.
17.
18.
M. Gaviria F. Ohanna 《European journal of applied physiology and occupational physiology》1999,80(2):145-153
The aim of this study was to determine the effect of the time after spinal cord injury (less than and greater than 10 months) on the mechanical and electrophysiological characteristics of muscle fatigue of the paralyzed electrically stimulated quadriceps muscle. Morphologically and histochemically, a relationship was observed between muscle fatigue and the delay from injury, revealing a critical period of enzymatic turning and a maximum peak of atrophy around the 10th month after the injury, followed by a long-term stabilization. Knee-torque output and M-wave variables (amplitude, latency, duration, and root mean square, RMS) of two muscular heads of the quadriceps were recorded in 19 paraplegic patients during a 120-s isometric contraction. The fatiguing muscle contraction was elicited by supramaximal continuous 20-Hz electrical stimulation. Compared to the chronic group, the acutely paralyzed group showed a greater resistance to fatigue (amount and rate of force decline, P < or = 0.01), smaller alterations of the M-wave amplitude and RMS, and a limited decrease of the muscle fiber conduction velocity (P < 0.05). Mechanical and electrophysiological changes during fatigue provided a clear functional support of the transformation of skeletal muscle under the lesion and of the existence of a critical period of muscular turn. In conclusion, when considering the artificial restoration of motor function, the evolution of the endurance and force-generating capabilities of the muscle actuator must be taken into account, particularly when tasks require important safety conditions (e.g., standing and walking). 相似文献
19.
Valenti L Mathieu J Chancerelle Y Levacher M Chanaud B De Sousa M Strzalko S Dinh-Xuan AT Giroud JP Florentin I 《Cellular immunology》2003,221(1):50-63
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one. 相似文献