首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described.  相似文献   

2.
Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD).  相似文献   

3.
A potent and novel class of product-like inhibitors of the HCV NS3 protease was discovered by employing a phosphinic acid as a carboxylate isostere. The replicon activity and pharmacokinetic profile of this series of compounds was optimized by exploring the substitution of the phosphinic acid, as well as conformationally constraining these compounds through macrocyclization. The syntheses and preliminary biological evaluation of these phosphinic acids is described.  相似文献   

4.
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we explore some new P2 motifs to further exploit this region of the enzyme. In a continuing effort to replace the often found 4-hydroxyproline P2 core found in the majority of inhibitors for this target, various directly attached aryl derivatives were evaluated. Of these, the 2,4-disubstituted thiazole core proved to be the most interesting. SAR around this motif has lead to compounds with Ki’s in the high picomolar range and provided cellular potencies in the single digit nM range.  相似文献   

5.
The mechanism and kinetics of the interactions between ligands and immobilized full‐length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3–NS4A interaction consisted of a high‐affinity (KD = 50 nM) and a low‐affinity (KD = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism‐based inhibitor VX 950 exhibited a time‐dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN‐191 showed no signs of time‐dependent interactions, but ITMN‐191 had the highest affinity of the tested compounds, with both the slowest dissociation (koff) and fastest association rate, closely followed by BILN 2061. The koff for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti‐HCV lead discovery and optimization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

7.
The hepatitis C virus non-structural protein 3 (HCV NS3) possesses both protease and helicase activities that are essential for viral replication. In a previous study, we obtained RNA aptamers that specifically and efficiently inhibited NS3 protease activity (G9 aptamers). In order to add helicase-inhibition capability, we attached (U)14 to the 3'-terminal end of a minimized G9 aptamer, DeltaNEO-III. NEO-III-14U was shown to inhibit the NS3 protease activity more efficiently than the original aptamer and, furthermore, to efficiently inhibit the unwinding reaction by NS3 helicase. In addition, NEO-III-14U has the potential to diminish specific interactions between NS3 and the 3'-UTR of HCV-positive and -negative strands. NEO-III-14U showed effective inhibition against NS3 protease in living cells.  相似文献   

8.
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease.  相似文献   

9.
We recently reported a new class of inhibitors of the chymotrypsin-like serine protease NS3 of the hepatitis C virus. These inhibitors exploit the binding potential of the S' site of the protease, which is not generally used by the natural substrates. The effect of prime-site occupancy was analyzed by circular dichroism spectroscopy and limited proteolysis-mass spectrometry. Generally, nonprime inhibitors cause a structural change in NS3. Binding in the S' site produces additional conformational changes with different binding modes, even in the case of the NS3/4A cofactor complex. Notably, inhibitor binding either in the S or S' site also has profound effects on the stabilization of the protease. In addition, the stabilization propagates to regions not in direct contact with the inhibitor. In particular, the N-terminal region, which according to structural studies is endowed with low structural stability and is not stabilized by nonprime inhibitors, was now fully protected from proteolytic degradation. From the perspective of drug design, P-P' inhibitors take advantage of binding pockets, which are not exploited by the natural HCV substrates; hence, they are an entry point for a novel class of NS3/4A inhibitors. Here we show that binding of each inhibitor is associated with a specific structural rearrangement. The development of a range of inhibitors belonging to different classes and an understanding of their interactions with the protease are required to address the issue of the most likely outcome of viral protease inhibitor therapy, that is, viral resistance.  相似文献   

10.
The inhibition mechanism of electrophilic peptide-based protease inhibitors of full-length hepatitis C virus (HCV) NS3 has been investigated by determining the Ki-values for a series of compounds differing in the electrophilicity and acidity of the C-terminal residue at pH-values above and below the pKa of the catalytic histidine (6.85) and at two different ionic strengths. Electrophilic compounds with a pentafluoroethyl ketone group showed stronger inhibition at pH 8 than pH 6, as expected for a mechanism requiring an unprotonated catalytic histidine. However, the difference was only significant at high ionic strength. In contrast, electrophilic compounds with an acidic C-terminal group or a cyclic P1 residue showed a lower inhibitory effect at pH 8 than at pH 6, inconsistent with a mechanism-based inhibition. Moreover, all electrophilic compounds had an unexpectedly strong inhibition at pH 6, when mechanism-based inhibition is unlikely. The results suggest that for some of the electrophilic compounds the reactive group may not be properly positioned in the active site and that binding of these inhibitors is a result of non-covalent interactions. The nature of these interactions is discussed.  相似文献   

11.
Cleavage of the hepatitis C virus polyprotein between the non-structural NS2 and NS3 proteins is mediated by a poorly characterised auto-proteolytic activity that maps to the C terminus of NS2 and the N terminus of NS3, but is distinct from the NS3 protease activity responsible for downstream cleavages in the polyprotein. We have exploited the fact that the minimal precursor (residues 904-1206 of the HCV polyprotein) can be expressed as an insoluble protein in Escherichia coli and subsequently refolded into a form active for both auto-cleavage and NS3 protease activity, to further characterise the NS2/3 auto-cleavage activity. We show that both activities are zinc-dependent and show an absolute requirement for cysteine residues 1123, 1125 and 1171 within NS3. In contrast cysteine 922 (within NS2) is only required for NS2/3 auto-cleavage activity and histidine 1175 is only required for NS3 activity. Although the complete NS3 protease domain (including the C-terminal alpha-helix) is required for NS2/3 auto-cleavage, the activity of the NS3 protease is not essential. Lastly we show that the NS2/3 auto-cleavage activity is more sensitive to zinc chelation by 1,10-phenanthroline than the NS3 protease activity. This observation is consistent with different conformations of the precursor competent for either NS2/3 auto-cleavage or NS3 protease activity; these two conformations can be distinguished by their relative strength and geometry of zinc coordination.  相似文献   

12.
We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.  相似文献   

13.
In this report we describe the synthesis and evaluation of diverse 4-arylproline analogs as HCV NS3 protease inhibitors. Introduction of this novel P2 moiety opened up new SAR and, in combination with a synthetic approach providing a versatile handle, allowed for efficient exploitation of this novel series of NS3 protease inhibitors. Multiple structural modifications of the aryl group at the 4-proline, guided by structural analysis, led to the identification of analogs which were very potent in both enzymatic and cell based assays. The impact of this systematic SAR on different drug properties is reported.  相似文献   

14.
Previously, it was found that the hepatitis C virus NS5A interacted with ACBD3 in a genotype-dependent manner. However, the region in NS5A responsible for association with ACBD3 is not clear. Domain I of NS5A was identified as critical for ACBD3 binding. By comparing the differences of amino acids in domain I from different genotypes of NS5A, it was found that key amino acids potentially corresponded to the affinity of the NS5A-ACBD3 interaction. The findings not only revealed that domain I of NS5A associates with ACBD3 but they also shed mechanistic light on how NS5A is associated with ACBD3 in a genotype-dependent manner.  相似文献   

15.
The design and synthesis of a series of tripeptide acylsulfonamides as potent inhibitors of the HCV NS3/4A serine protease is described. These analogues house a C4 aryl, C4 hydroxy-proline at the S2 position of the tripeptide scaffold. Information relating to structure-activity relationships as well as the pharmacokinetic and cardiovascular profiles of these analogues is provided.  相似文献   

16.
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10 µM with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33 µM against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery.  相似文献   

17.
Under the guidance of bioassay, the EtOAc extract fraction of the Traditional Chinese Medicine (TCM) Galla Chinese was found to be efficient in inhibiting the NS3 protease of HCV and purified the fraction to get three polyphenol compounds 1,2,6-tri-O-galloyl-β-D-glucose (1), 1,2,3,6-tetra-O-galloyl-β-D-glucose (2), and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (3), which were identified as inhibitors of Hepatitis C Virus (HCV) NS3 protease. Compounds 1, 2, and 3 inhibited HCV NS3 protease with IC50 of 1.89, 0.75, and 1.60 μM, respectively.  相似文献   

18.
A number of potent peptidic inhibitors of the NS3 protease have been described in the literature based on a substrate-based approach. In an on-going effort to reduce the peptidic character of this class of inhibitors, two novel series of analogs have been prepared in which the usual P3 amino acid residue is replaced by a succinamide fragment. This new backbone modification not only reduces the peptidic nature of traditional inhibitors but also provides new SAR opportunities for the capping group. Optimization of each of these two series resulted in inhibitors with sub-nanomolar potencies.  相似文献   

19.
Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wild-type and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.  相似文献   

20.
日本脑炎病毒(Japanese encephalitis virus,JEV)是单股正链RNA病毒,全基因组仅含有一个开放阅读框,编码一条多聚蛋白前体,病毒编码的NS3蛋白酶在JEV多聚蛋白加工过程中起着重要作用,是重要的药物靶标。通过PCR扩增了NS2BH-NS3蛋白酶的编码区,构建了原核表达质粒并转化到大肠杆菌BL21(DE3),经IPTG诱导得到可溶性的NS3蛋白酶,用镍亲和层析方法进行了纯化。建立了基于荧光共振能量转移的NS3蛋白酶活性检测方法,并确定了最佳的反应条件,对113个化合物进行了筛选,发现其中两个化合物对JEV NS3蛋白酶具有一定的抑制活性。本研究为JEV NS3蛋白酶的活性研究及抑制剂筛选提供了一种操作方便、成本低廉的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号