首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Far-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose–phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar–phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism. The procedures described here will be valuable for determining how the phosphorylation and 14-3-3-binding status of defined target proteins change in response to extracellular stimuli.  相似文献   

2.
The 14-3-3s are a ubiquitous class of eukaryotic proteins that participate in a second regulatory step in many phosphorylation-based signal transduction systems. The Arabidopsis family of 14-3-3 proteins represents a rather large 14-3-3 gene family. The biological motive for such diversity within a single protein family is not yet completely understood. The work presented here utilizes 14-3-3 micro-affinity chromatography in conjunction with Fourier transform ion cyclotron resonance mass spectrometry to survey the substrate sequence selectivity of two Arabidopsis 14-3-3 isoforms that represent the two major subclasses of this protein family. A method was developed to compare the relative binding of eight synthetic phosphopeptide sequences. The degree to which each phosphopeptide bound to either isoform was assigned a relative value, defined here as the binding ratio. The method provided a simple means for visualizing differences in substrate sequence selection among different 14-3-3 isoforms. A reproducible preference for specific phosphopeptide sequences was measured for both isoforms. This binding preference was consistent among the two classes of isoforms, suggesting that any pressure for isoform selectivity must reside outside the central core that interacts with the phosphopeptide sequence of the client.  相似文献   

3.
A structural basis for 14-3-3sigma functional specificity   总被引:4,自引:0,他引:4  
The 14-3-3 family of proteins includes seven isotypes in mammalian cells that play numerous diverse roles in intracellular signaling. Most 14-3-3 proteins form homodimers and mixed heterodimers between different isotypes, with overlapping roles in ligand binding. In contrast, one mammalian isoform, 14-3-3sigma, expressed primarily in epithelial cells, appears to play a unique role in the cellular response to DNA damage and in human oncogenesis. The biological and structural basis for these 14-3-3sigma-specific functions is unknown. We demonstrate that endogenous 14-3-3sigma preferentially forms homodimers in cells. We have solved the x-ray crystal structure of 14-3-3sigma bound to an optimal phosphopeptide ligand at 2.4 angstroms resolution. The structure reveals the presence of stabilizing ring-ring and salt bridge interactions unique to the 14-3-3sigma homodimer structure and potentially destabilizing electrostatic interactions between subunits in 14-3-3sigma-containing heterodimers, rationalizing preferential homodimerization of 14-3-3sigma in vivo. The interaction of the phosphopeptide with 14-3-3 reveals a conserved mechanism for phospho-dependent ligand binding, implying that the phosphopeptide binding cleft is not the critical determinant of the unique biological properties of 14-3-3sigma. Instead, the structure suggests a second ligand binding site involved in 14-3-3sigma-specific ligand discrimination. We have confirmed this by site-directed mutagenesis of three sigma-specific residues that uniquely define this site. Mutation of these residues to the alternative sequence that is absolutely conserved in all other 14-3-3 isotypes confers upon 14-3-3sigma the ability to bind to Cdc25C, a ligand that is known to bind to other 14-3-3 proteins but not to sigma.  相似文献   

4.
May T  Soll J 《The Plant cell》2000,12(1):53-64
Transit sequences of chloroplast-destined precursor proteins are phosphorylated on a serine or threonine residue. The amino acid motif around the phosphorylation site is related to the phosphopeptide binding motif for 14-3-3 proteins. Plant 14-3-3 proteins interact specifically with wheat germ lysate-synthesized chloroplast precursor proteins and require an intact phosphorylation motif within the transit sequence. Chloroplast precursor proteins do not interact with 14-3-3 when synthesized in the heterologous reticulocyte lysate. In contrast, a precursor protein destined for plant mitochondria was found to be associated with 14-3-3 proteins present in the reticulocyte lysate but not with 14-3-3 from wheat germ lysate. This indicates an unrecognized selectivity of 14-3-3 proteins for precursors from mitochondria and plastids in plants in comparison to fungi and animals. The heterooligomeric complex has an apparent size of 200 kD. In addition to the precursor protein, it contains 14-3-3 (probably as a dimer) and a heat shock protein Hsp70 isoform. Dissociation of the precursor complex requires ATP. Protein import experiments of precursor from the oligomeric complex into intact pea chloroplasts reveal three- to fourfold higher translocation rates compared with the free precursor, which is not complexed. We conclude that the 14-3-3-Hsp70-precursor protein complex is a bona fide intermediate in the in vivo protein import pathway in plants.  相似文献   

5.
The fungal phytotoxin fusicoccin stabilizes the interaction between the C-terminus of the plant plasma membrane H(+)-ATPase and 14-3-3 proteins, thus leading to permanent activation of the proton pump. This results in an irreversible opening of the stomatal pore, followed by wilting of plants. Here, we report the crystal structure of the ternary complex between a plant 14-3-3 protein, fusicoccin and a phosphopeptide derived from the C-terminus of the H(+)-ATPase. Comparison with the corresponding binary 14-3-3 complexes indicates no major conformational change induced by fusicoccin. The compound rather fills a cavity in the protein-phosphopeptide interaction surface. Isothermal titration calorimetry indicates that the toxin alone binds only weakly to 14-3-3 and that peptide and toxin mutually increase each others' binding affinity approximately 90-fold. These results are important for herbicide development but might have general implications for drug development, since rather than inhibiting protein-protein interactions, which is difficult to accomplish, it might be easier to reverse the strategy and stabilize protein-protein complexes. As the fusicoccin interaction shows, only low-affinity interactions would be required for this strategy.  相似文献   

6.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.  相似文献   

7.
The 14-3-3 proteins, a family of conserved regulatory molecules, participate in a wide range of cellular processes through binding interactions with hundreds of structurally and functionally diverse proteins. Several distinct mechanisms of the 14-3-3 protein function were described, including conformational modulation of the bound protein, masking of its sequence-specific or structural features, and scaffolding that facilitates interaction between two simultaneously bound proteins. Details of these functional modes, especially from the structural point of view, still remain mostly elusive. This review gives an overview of the current knowledge concerning the structure of 14-3-3 proteins and their complexes as well as the insights it provides into the mechanisms of their functions. We discuss structural basis of target recognition by 14-3-3 proteins, common structural features of their complexes and known mechanisms of 14-3-3 protein-dependent regulations.  相似文献   

8.
The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.  相似文献   

9.
Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins   总被引:5,自引:0,他引:5  
Tyrosine hydroxylase (TH) is phosphorylated by CaM kinase II and is activated in situ in response to a variety of stimuli that increase intracellular Ca(2+). We report here, using baculovirus-expressed TH, that the 14-3-3 protein binds and activates the expressed TH when the enzyme is phosphorylated at Ser-19, a site of CaM kinase II-dependent phosphorylation located in the regulatory domain of TH. Site-directed mutagenesis showed that a TH mutant in which Ser-19 was substituted by Ala retained enzymatic activity at the same level as the non-mutated enzyme, but was a poor substrate for CaM kinase II and did not bind the 14-3-3 protein. Likewise, a synthetic phosphopeptide (FRRAVpSELDA) corresponding to the part of the TH sequence, including phosphoSer-19, inhibited the interaction between the expressed TH and 14-3-3, while the phosphopeptide (GRRQpSLIED) corresponding to the site of cAMP-dependent phosphorylation (Ser-40) had little effect on complex formation. The complex was very stable with a dissociation constant of 3 nM. Furthermore, analysis of PC12nnr5 cells transfected with myc-tagged 14-3-3 showed that 14-3-3 formed a complex with endogenous TH when the cultured cells were exposed to a high K(+) concentration that increases intracellular Ca(2+) and phosphorylation of Ser-19 in TH. These findings suggest that the 14-3-3 protein participates in the stimulus-coupled regulation of catecholamine synthesis that occurs in response to depolarization-evoked, Ca(2+)-dependent phosphorylation of TH.  相似文献   

10.
Many proteins that bind to a 14-3-3 column in competition with a 14-3-3-binding phosphopeptide have been purified from plant and mammalian cells and tissues. New 14-3-3 targets include enzymes of biosynthetic metabolism, vesicle trafficking, cell signalling and chromatin function. These findings indicate central regulatory roles for 14-3-3s in partitioning carbon among the pathways of sugar, amino acid, nucleotide and protein biosynthesis in plants. Our results also suggest that the current perception that 14-3-3s bind predominantly to signalling proteins in mammalian cells is incorrect, and has probably arisen because of the intensity of research on mammalian signalling and for technical reasons.  相似文献   

11.
12.
Obsil T  Ghirlando R  Klein DC  Ganguly S  Dyda F 《Cell》2001,105(2):257-267
Serotonin N-acetyltransferase (AANAT) controls the daily rhythm in melatonin synthesis. When isolated from tissue, AANAT copurifies with isoforms epsilon and zeta of 14-3-3. We have determined the structure of AANAT bound to 14-3-3zeta, an association that is phosphorylation dependent. AANAT is bound in the central channel of the 14-3-3zeta dimer, and is held in place by extensive interactions both with the amphipathic phosphopeptide binding groove of 14-3-3zeta and with other parts of the central channel. Thermodynamic and activity measurements, together with crystallographic analysis, indicate that binding of AANAT by 14-3-3zeta modulates AANAT's activity and affinity for its substrates by stabilizing a region of AANAT involved in substrate binding.  相似文献   

13.
The cardiac isoform of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase (PFK-2), regulator of the glycolysis-stimulating fructose-2,6-bisphosphate, was among human HeLa cell proteins that were eluted from a 14-3-3 affinity column using the phosphopeptide ARAApSAPA. Tryptic mass fingerprinting and phospho-specific antibodies showed that Ser466 and Ser483 of 14-3-3-affinity-purified PFK-2 were phosphorylated. 14-3-3 binding was abolished by selectively dephosphorylating Ser483, and 14-3-3 binding was restored when both Ser466 and Ser483 were phosphorylated with PKB, but not when Ser466 alone was phosphorylated by AMPK. Furthermore, the phosphopeptide RNYpS(483)VGS blocked binding of PFK-2 to 14-3-3s. These data indicate that 14-3-3s bind to phosphorylated Ser483. When HeLa cells expressing HA-tagged PFK-2 were co-transfected with active PKB or stimulated with IGF-1, HA-PFK-2 was phosphorylated and bound to 14-3-3s. The response to IGF-1 was abolished by PI 3-kinase inhibitors. In addition, IGF-1 promoted the binding of endogenous PFK-2 to 14-3-3s. When cells were transduced with penetratin-linked AARAApSAPA, we found that this reagent bound specifically to 14-3-3s, blocked the IGF-1-induced binding of HA-PFK-2 to 14-3-3s, and completely inhibited the IGF-1-induced increase in cellular fructose-2,6-bisphosphate. These findings suggest that PKB-dependent binding of 14-3-3s to phospho-Ser483 of cardiac PFK-2 mediates the stimulation of glycolysis by growth factor.  相似文献   

14.
The 14-3-3 proteins mediate phosphorylation-dependent protein-protein interactions. Through binding to numerous client proteins, 14-3-3 controls a wide range of physiological processes and has been implicated in a variety of diseases, including cancer and neurodegenerative disorders. To better understand the structure and function of 14-3-3 proteins and to develop small-molecule modulators of 14-3-3 proteins for physiological studies and potential therapeutic interventions, the authors have designed and optimized a highly sensitive fluorescence polarization (FP)-based 14-3-3 assay. Using the interaction of 14-3-3 with a fluorescently labeled phosphopeptide from Raf-1 as a model system, they have achieved a simple 1-step "mix-and-measure" method for analyzing 14-3-3 proteins. This is a solution-based, versatile method that can be used to monitor the binding of 14-3-3 with a variety of client proteins. The 14-3-3 FP assay is highly stable and has achieved a robust performance in a 384-well format with a demonstrated signal-to-noise ratio greater than 10 and a Z' factor greater than 0.7. Because of its simplicity and high sensitivity, this assay is generally applicable to studying 14-3-3/client-protein interactions and especially valuable for high-throughput screening of 14-3-3 modulators.  相似文献   

15.
14-3-3 proteins are abundant binding proteins involved in many biologically important processes. 14-3-3 proteins bind to other proteins in a phosphorylation-dependent manner and function as scaffold molecules modulating the activity of their binding partners. In this work, we studied the conformational changes of 14-3-3 C-terminal stretch, a region implicated in playing a role in the regulation of 14-3-3. Time-resolved fluorescence and molecular dynamics were used to investigate structural changes of the C-terminal stretch induced by phosphopeptide binding and phosphorylation at Thr232, a casein kinase I phosphorylation site located within this region. A tryptophan residue placed at position 242 was exploited as an intrinsic fluorescence probe of the C-terminal stretch dynamics. Other tryptophan residues were mutated to phenylalanine. Time-resolved fluorescence measurements revealed that phosphopeptide binding changes the conformation and increases the flexibility of 14-3-3zeta C-terminal stretch, demonstrating that this region is directly involved in ligand binding. Phosphorylation of 14-3-3zeta at Thr232 resulted in inhibition of phosphopeptide binding and suppression of 14-3-3-mediated enhancement of serotonin N-acetyltransferase activity. Time-resolved fluorescence of Trp242 also revealed that phosphorylation at Thr232 induces significant changes of the C-terminal stretch conformation. In addition, molecular dynamic simulations suggest that phosphorylation at Thr232 induces a more extended conformation of 14-3-3zeta C-terminal stretch and changes its interaction with the rest of the 14-3-3 molecule. These results indicate that the conformation of the C-terminal stretch plays an important role in the regulation of 14-3-3 binding properties.  相似文献   

16.
14-3-3 proteins are important regulators of numerous cellular signaling circuits. They bind to phosphorylated protein ligands and regulate their functions by a number of different mechanisms. The C-terminal part of the 14-3-3 protein is known to be involved in the regulation of 14-3-3 binding properties. The structure of this region is unknown; however, a possible location of the C-terminal stretch within the ligand binding groove of the 14-3-3 protein has been suggested. To fully understand the role of the C-terminal stretch in the regulation of the 14-3-3 protein binding properties, we investigated the physical location of the C-terminal stretch and its changes upon the ligand binding. For this purpose, we have used Forster resonance energy transfer (FRET) measurements and molecular dynamics simulation. FRET measurements between Trp242 located at the end of the C-terminal stretch and a dansyl group attached at two different cysteine residues (Cys25 or Cys189) indicated that in the absence of the ligand, the C-terminal stretch occupies the ligand binding groove of 14-3-3 protein. Our data also showed that phosphopeptide binding displaces the C-terminal stretch from the ligand binding groove. Intramolecular distances calculated from FRET measurements fit well with distances obtained from molecular dynamics simulation of full-length 14-3-3zeta protein.  相似文献   

17.
14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3 zeta affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-3-3-binding proteins and implicates a role for 14-3-3 proteins in a plethora of essential biological processes.  相似文献   

18.
19.
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.  相似文献   

20.
Manak MS  Ferl RJ 《Biochemistry》2007,46(4):1055-1063
Oscillations in cellular divalent cation concentrations are key events that can trigger signal transduction cascades. Common cellular divalent cations, such as calcium and magnesium, interact with 14-3-3 proteins. The metal ion interaction causes a conformational change in the 14-3-3 proteins, which is manifested as an increase in hydrophobicity. In this study, the effect of divalent cations on the interaction between 14-3-3 proteins and target peptides was investigated using surface plasmon resonance and isothermal titration calorimetry. The binding between ten recombinant Arabidopsis 14-3-3 isoforms and two synthetic target peptides was observed in the presence of various physiologically relevant concentrations of calcium or magnesium, from 1 microM to 1 mM or from 1 microM to 5 mM, respectively. The synthetic target peptides were based on sequences from Arabidopsis nitrate reductase (NR2) and the plasma membrane proton pump (AHA2) representing fundamentally different target classes. Isoforms representing every branch of the Arabidopsis 14-3-3 phylogenetic tree were tested. The general result for all cases is that an increased concentration of divalent cations in solution causes an increase in the concentration of 14-3-3 protein interacting with the respective phosphopeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号