首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Steller sea lions are highly maneuverable marine mammals (expressed as minimum turning radius). Video recordings of turns ( n = 195) are analyzed from kinematic measurements for three captive animals. Speed-time plots of 180° turns have a typical \"V-shape.\" The sea lions decelerated during the first half of the turn, reached a minimum speed in the middle of the curved trajectory and reaccelerated by adduction of the pectoral flippers. The initial deceleration was greater than that for passive gliding due to pectoral flipper braking and/or change in body contour from a stiff, straight streamlined form. Centripetal force and thrust were determined from the body acceleration. Most thrust was produced during the power phase of the pectoral flipper stroke cycle. Contrary to previous findings on otariids, little or no thrust was generated during initial abduction of the pectoral flippers and during the final drag-based paddling phase of the stroke cycle. Peak thrust force at the center of gravity occurs halfway through the power phase and the centripetal force is maximal at the beginning of the power stroke. Performance is modulated by changes in the duration and intensity of movements without changing their sequence. Turning radius, maximum velocity, maximum acceleration and turning duration were 0.3 body lengths, 3.5 m/s, 5 m/s2, and 1.6 s, respectively. The relative maneuverability based on velocity and length specific minimum turning radius is comparable to other otariids, superior to cetaceans but inferior to many fish.  相似文献   

2.
    
Understanding infield predator dispersal is crucial for designing predator conservation programmes. A study aimed at evaluating methods of collecting insects in protein-marking studies and monitoring predator movement was conducted. Results indicate that collection by sweep net does not result in false positives and predator groups displayed distinct dispersal patterns.  相似文献   

3.
Most studies of foraging in shell-less gastropods have focused on the ubiquitous generalist sea hares (family Aplysiidae; subfamily Aplysiinae: Aplysia spp., Dolabella spp). Here we studied movement in a specialist sea hare (the seacat, Dolabrifera dolabrifera; subfamily Dolabriferinae). Seacats in each of 7 different tidepools on Isla Naos in the Gulf of Panama emerged precisely when the daytime ebbing tide fell below the height of their pool, returning to their hiding places within 1-3 hours. This short, precise foraging pattern contrasts sharply with long, variable schedule of the generalist sea-hares. Combined with their reduced chemical and behavioral defenses, these observations on seacats raise the possibility that they are avoiding predators during high tides and at night.  相似文献   

4.
5.
    
Salinity preference and responses to predatory chemical cues were examined both separately and simultaneously in freshwater (FW) and saltwater (SW)‐acclimated sailfin mollies Poecilia latipinna, a euryhaline species. It was hypothesized that P. latipinna would prefer FW over SW, move away from chemical cues from a crayfish predator, and favour predator avoidance over osmoregulation when presented with both demands. Both FW and SW‐acclimated P. latipinna preferred FW and actively avoided predator cues. When presented with FW plus predator cues v. SW with no cues, P. latipinna were more often found in FW plus predator cues. These results raise questions pertaining to the potential osmoregulatory stress of salinity transitions in euryhaline fishes relative to the potential fitness benefits and whether euryhalinity is utilized for predator avoidance. This study sheds light on the potential benefits and consequences of being salt tolerant or intolerant and complicates the understanding of the selection pressures that have favoured the different osmoregulatory mechanisms among fishes.  相似文献   

6.
Predators and prey often engage in a game where predators attemptto be in areas with higher prey densities and prey attempt tobe in areas with lower predator densities. A few models havepredicted the resulting distributions of predators and prey,but little empirical data exist to test these predictions andto examine how abiotic and biotic factors shape the distributions.Thus, we observed how Anax dragonfly nymphs and Pacific treefrog tadpoles (Pseudacris regilla) either together or separatelydistributed themselves in an arena with a high- and a low-preyresource patch. Trials were conducted in high- and low-lightconditions to manipulate predation risk and to view the effectsof this abiotic factor. Counter to the model predictions, wefound that predators were not more abundant in high-resource(HR) patches, and they thus did not force prey toward beinguniformly distributed. Using a model selection approach to assesswhat factors affected predator and prey patch-switching movement,we found that prey more often left patches that had more predatorspresent, but predators surprisingly more often left patcheswith more prey present. Light levels did not affect predationrisk; however, in the dark with the associated reduction invisual information predators preferred HR patches. This causeda lower coincidence of prey and predators in patches. Predatorsalso switched patches less often when they occupied the samepatch as the other predator. This suggests that predator distributions,and indirectly prey distributions, are affected by the riskof intraguild predation.  相似文献   

7.
Abstract Behaviour of nocturnal insects is routinely observed under red light, but it is unclear how the behaviour under red light compares to behaviour in complete darkness, or under a source of white light. Here, we measure movement behaviour of the nocturnal carabid beetle Pterostichus melanarius Illiger (Coleoptera: Carabidae) using camera recording under a near‐infrared (nir), red or white radiation source. Red light significantly reduced movement speed in females similar to the effect of white light and different from nir. Also movement activity and pause length were affected by radiation source, with a significant difference between nir and white light, and with intermediate values in red light. The results presented here indicate that P. melanarius has different movement behaviour under the three radiation sources and suggest that nir rather than red radiation is most appropriate for measuring behaviour in total darkness. However, in the field total darkness is rare both because of natural light sources such as the moon and stars but increasingly also because of ecological light pollution, and therefore red light may still be of use for observing ecologically and practically relevant natural night‐time behaviour.  相似文献   

8.
    
Locomotion is important to animals because it has direct implications for fitness through its role in predator escape, prey capture, and territory defence. Despite significant advances in our understanding of animal locomotion, studies exploring how substrate properties affect locomotor performance remain scant. In the present study, we explore how variation in substrate (sand, slate, cork) affects locomotor performance in lacertid lizards that differ in morphology. Moreover, we explore whether substrate effects are the same for different types of locomotor performance (speed, acceleration, and stamina). Our results show that the substrate affected most types of locomotor performance studied but not always in the same way. Although substrate effects were species‐dependent for the maximal speed over 50 cm and the distance run to exhaustion, this was not the case for acceleration capacity. These results suggest that substrate texture differentially affects burst performance vs. longer duration measures of locomotor performance. Finally, straightforward relationships between habitat use and the substrate on which performance was maximized were not observed. This suggests that the evolution of locomotor capacity is complex and that animals may show compromise phenotypes allowing them to deal with a variety of substrates in their natural environment. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●●, ●●–●●.  相似文献   

9.
Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.  相似文献   

10.
    
The functional and evolutionary implications of morphological diversification have been addressed for several groups of vertebrates. Although the mechanisms of gecko adhesion have received considerable attention, little is known regarding locomotor performance of geckos in nature, and how this might relate to morphological diversity. In this study we examine locomotor performance of two sympatric sister species of geckos of the genus Rhoptropus (Rhoptropus afer and Rhoptropus bradfieldi) found in the coastal desert regions of Namibia. One species (R. afer) commonly runs on sandy substrates and moves between isolated rock sheets, whereas the other species (R. bradfieldi) commonly lives and runs on isolated boulders. The morphology of R. afer is extremely divergent from its sister species and all other species in the genus. We initially recorded the inclination of the substrate in which the lizards were found in order to characterize the habitat of each species. We then quantified maximum speed and acceleration on a level 1‐m trackway, and also during escapes in the field. We found that R. bradfieldi occupies steeper surfaces than those occupied by R. afer. On the trackway and in nature, R. afer runs faster than R. bradfieldi, although the differences in locomotor performance between the species are greater for the field measurements. Rhoptropus afer commonly runs for more than 2 or 3 m, whereas R. bradfieldi commonly runs less than 50 cm during an escape sprint. Our main conclusions are that: (1) R. afer attains higher maximum speeds when escaping under controlled and field conditions, although the magnitude differs between conditions; and (2) hindlimb morphology correlates with maximum running speed in R. afer, but not in R. bradfieldi. Similar to the well‐studied Anolis lizards, we propose that these two gecko species represent distinct and highly divergent ecomorphs. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 860–869.  相似文献   

11.
The flight speeds of hunting falconry birds were determined using global positioning system data loggers. Until now, the hunting flight speed of African raptors has not been directly measured. We predicted that hunting flight speeds would differ between species and that flight dynamics, such as altitude, and bird morphology, particularly wing surface area, would influence maximum and mean flight speeds. This study considered five African raptor species, which included two long-wing species, Lanner Falcon Falco biarmicus and Peregrine Falcon F. peregrinus, one short-wing species, Black Sparrowhawk Accipiter melanoleucus, and two broad-wing species, African Hawk-eagle Aquila spilogaster and Jackal Buzzard Buteo rufofuscus. Maximum and mean hunt speeds differed significantly between the long- and short-wing species. There was no difference in acceleration or deceleration rates between these species, but this could be due to small sample sizes. There was a significant positive correlation between maximum hunt speed and maximum flight height for the long-wing species. Maximum and mean flight speeds were significantly negatively correlated with wing area for all five species in this study. However, following phylogenetic correction, no significant relationship between wing area and maximum hunt speeds was found. This study presents baseline data of hunting speeds in African raptors and further highlights the importance of inter-species variation, which can provide accuracy to flight speed models and the understanding of hunting strategies.  相似文献   

12.
    
Snowpack dynamics have a major influence on wildlife movement ecology and predator–prey interactions. Specific snow properties such as density, hardness, and depth determine how much an animal sinks into the snowpack, which in turn drives both the energetic cost of locomotion and predation risk. Here, we quantified the relationships between five field-measured snow variables and snow track sink depths for widely distributed predators (bobcats Lynx rufus, cougars Puma concolor, coyotes Canis latrans, wolves C. lupus) and sympatric ungulate prey (caribou Rangifer tarandus, white-tailed deer Odocoileus virginianus, mule deer O. hemionus, and moose Alces alces) in interior Alaska and northern Washington, USA. We first used generalized additive models to identify which snow metrics best predicted sink depths for each species and across all species. Next, we used breakpoint regression to identify thresholds of support for the best-performing predictor of sink depth for each species (i.e. values wherein tracks do not sink appreciably deeper into the snow). Finally, we identified ‘danger zones,' wherein snow impedes the mobility of ungulates more than carnivores, by comparing sink depths relative to hind leg lengths among predator–prey pairs. Near-surface (0–20 cm) snow density was the strongest predictor of sink depth across species. Thresholds of support occurred at near-surface snow densities between 220–310 kg m–3 for predators and 300–410 kg m–3 for prey, and danger zones peaked at intermediate snow densities (200–300 kg m–3) for eight of the ten predator–prey pairs. These results can be used to link predator–prey relationships with spatially explicit snow modeling outputs and projected future changes in snow density. As climate change rapidly reshapes snowpack dynamics, these danger zones provide a useful framework to anticipate likely winners and losers of future winter conditions.  相似文献   

13.
    
Fish school size varies with several factors, such as environmental conditions, individual size, time of day, and variations between individuals. In this study, we investigate the mean size of fish schools formed in a simple agent-based model, wherein each individual swims at a fixed speed with the direction modified by interactions with the neighbors. If alignment (tendency to swim in their neighbors' direction) is stronger than cohesion (tendency to swim toward the neighbors), then “marches” are formed, in which individuals swim in the same direction. If alignment is weaker than cohesion, then “circles” are formed, in which individuals chase one another and the entire group moves minimally. We analyzed various processes that control the shape and mean size of the schools. The school's shape is primarily affected by the magnitude of alignment, cohesion, and individual noises. In contrast, the mean size of the group is affected by several factors, including the spatial interaction range, initial configuration, individual differences in swimming speed, and sudden encounters with predators.  相似文献   

14.
    
Experiments on the swimming kinetics and behaviour of weather loach Misgurnus anguillicaudatus showed that horizontal swim speed was significantly greater than swim speeds when ascending to or descending from the water surface to gulp air. Vertical swimming speeds during ascending or descending were similar. Misgurnus anguillicaudatus swam unsteadily during vertical movements compared with horizontal movements.  相似文献   

15.
    
Small eyespots on butterflies have long been thought to deflect attacks, and birds are the presumptive drivers selecting for these patterns; however, evidence of this function is still ambiguous. Marginal eyespots typically consist of a UV‐reflective white pupil, surrounded by one black and one yellowish ring. We have recently shown that Cyanistes caeruleus (blue tits) attack such eyespots, but only under low light intensities with accentuated UV levels: the increased salience of the eyespots relative to the rest of the butterfly probably explains this result. Possibly the background against which the butterfly is concealed may deceive birds to make similar errors. We therefore presented speckled wood butterflies decorated with eyespots (or controls without eyespots) to C. caeruleus against two backgrounds: oak and birch bark. Our results show that: (1) eyespots, independent of background, were effective in deflecting attacks; (2) the time elapsed between a bird landing and the attack was interactively dependent on the background and whether the butterfly bore an eyespot; and (3) the speed at which a butterfly was attacked predicted the outcome, with faster birds being more prone to errors than slower birds. This underscores a speed–accuracy trade‐off in the predators, and that background plays a role in the defensive qualities of marginal eyespots. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 290–297.  相似文献   

16.
17.
    
In the present study we investigated kinematical characteristics of the knee and ankle extensors to estimate the length change properties of the contractile and the passive elements in countermovement jumps (CMJ) and drop jumps (DJ) performed with small (40°) and large (80°) range of joint motion (SRM and LRM). At SRM the accelerations at maximal muscle lengths compared with the last phase of joint flexion were greater for the gastrocnemius and the soleus (124.9% and 79.4%) and also were greater than at the beginning of joint extension, while no difference was measured at LRM. The differences suggest that at LRM the length change of the serial passive elements from the end of joint flexion to the beginning of joint extension is minimal and simultaneously the length change of the contractile elements is significant, but at SRM – especially in the plantar flexors – the length change of the contractile elements is minimal while in the passive elements significant. It can be presumed that for SRM at the end of joint flexion significant elastic energy is stored and at the beginning of joint extension reused, while for LRM elastic energy storage is not dominant.  相似文献   

18.
19.
    
  1. Pathogens can increase vulnerability to predation through their harmful effects on hosts. Recently, it was shown that the mere activation of the immune system by pathogens may increase the host's risk of predation. Here, we test whether exposure to non‐pathogenic bacteria also activates the immune system and thereby increases vulnerability to predation.
  2. We exposed Enallagma cyathigerum damselfly larvae to a non‐pathogenic strain of the bacterium Escherichia coli and measured immune defence, anti‐predator behaviour and survival times in the presence of larval dragonfly predators. To evaluate whether non‐pathogenic bacteria also generated energy‐based trade‐offs leading to other fitness costs, we also quantified growth rate and survival in the absence of predators.
  3. Exposure to the non‐pathogenic bacterium did not affect survival in the absence of the predator but increased growth rate, possibly a response to reduce exposure time to the bacterium. Larvae exposed to the bacterium activated their immune response as shown by an increase in the activity of phenoloxidase and the number of haemocytes. The bacterium affected anti‐predator traits involved in avoiding detection by predators as well as traits involved in escape after detection. Pre‐exposed larvae showed higher activity levels and further increased the number of feeding strikes in the presence of predation risk, possibly driven by energetic constraints. Pre‐exposed larvae swam less often when attacked, but faster. This impaired anti‐predator response came at the ecological cost of increased vulnerability to predation.
  4. Our study demonstrated that exposure to non‐pathogenic bacteria increases vulnerability to predation, which is a novel type of antagonistic interaction. This highlights the unexplored possibility that non‐pathogens may play a role in maintaining variation in immune defence through insidious effects on predator–prey interactions. Since non‐pathogenic bacteria can be very abundant, this unexplored ecological cost of immune system activation in terms of increased predation may have major consequences in natural systems and may provide an unexplored new force underlying variation in immune defence.
  相似文献   

20.
    
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号