首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular chaperone Hsp90 orchestrates regulatory circuitry governing fungal morphogenesis, biofilm development, drug resistance, and virulence. Hsp90 functions in concert with co-chaperones to regulate stability and activation of client proteins, many of which are signal transducers. Here, we characterize the first Hsp90 co-chaperone in the leading human fungal pathogen, Candida albicans. We demonstrate that Sgt1 physically interacts with Hsp90, and that it governs C. albicans morphogenesis and drug resistance. Genetic depletion of Sgt1 phenocopies depletion of Hsp90, inducing yeast to filament morphogenesis and invasive growth. Sgt1 governs these traits by bridging two morphogenetic regulators: Hsp90 and the adenylyl cyclase of the cAMP-PKA signaling cascade, Cyr1. Sgt1 physically interacts with Cyr1, and depletion of either Sgt1 or Hsp90 activates cAMP-PKA signaling, revealing the elusive link between Hsp90 and the PKA signaling cascade. Sgt1 also mediates tolerance and resistance to the two most widely deployed classes of antifungal drugs, azoles and echinocandins. Depletion of Sgt1 abrogates basal tolerance and acquired resistance to azoles, which target the cell membrane. Depletion of Sgt1 also abrogates tolerance and resistance to echinocandins, which target the cell wall, and renders echinocandins fungicidal. Though Sgt1 and Hsp90 have a conserved impact on drug resistance, the underlying mechanisms are distinct. Depletion of Hsp90 destabilizes the client protein calcineurin, thereby blocking crucial responses to drug-induced stress; in contrast, depletion of Sgt1 does not destabilize calcineurin, but blocks calcineurin activation in response to drug-induced stress. Sgt1 influences not only morphogenesis and drug resistance, but also virulence, as genetic depletion of C. albicans Sgt1 leads to reduced kidney fungal burden in a murine model of systemic infection. Thus, our characterization of the first Hsp90 co-chaperone in a fungal pathogen establishes C. albicans Sgt1 as a global regulator of morphogenesis and drug resistance, providing a new target for treatment of life-threatening fungal infections.  相似文献   

2.
3.
4.
Candida albicans is a dimorphic human pathogen in which the yeast to hyphal switch may be an important factor in virulence in mammals. This pathogen has recently been shown to also kill insects such as the Greater Wax Moth Galleria mellonella when injected into the haemocoel of the insect larvae. We have investigated the effect of previously characterised C. albicans mutations that influence the yeast to hyphal transition on virulence in G. mellonella larvae. There is a good correlation between the virulence of these mutants in the insect host and the virulence measured through systemic infection of mice. Although the predominant cellular species detected in G. mellonella infections is the yeast form of C. albicans, mutations that influence the hyphal transition also reduce pathogenicity in the insect. The correlation with virulence measured in the mouse infection system suggests that Galleria may provide a convenient and inexpensive model for the in vivo screening of mutants of C. albicans.  相似文献   

5.
6.
Oral candidiasis in HIV-1-infected individuals is widely believed to be triggered by the acquired T-lymphocyte immunodeficiency. Recently, binding of the HIV-1 envelope protein gp160 and its subunit gp41, and also of the whole virus itself, to Candida albicans has been shown. The present study shows that, in addition to C. albicans, HIV-1 gp41 also binds to yeast and hyphal forms of Candida dubliniensis, a species which is closely related to C. albicans, and to Candida tropicalis but not to Candida krusei, Candida glabrata or Saccharomyces cerevisiae. The previous finding that gp41 binding to C. albicans augments fungal virulence in vitro is supported by the observation that the yeast showed an enhanced adhesion to HIV-infected H9 cells in comparison to uninfected cells. In line with these results soluble gp41 itself reduced binding of C. albicans to both endothelial and epithelial cell lines, confirming a dominant role of the gp41 binding moiety on the surface of Candida for adhesion. Surface-associated secreted aspartic proteinases (Saps) play an important role in candidial adhesion, but are not likely to be involved in the interaction as gp41 binding to the C. albicans parental wild-type strain was comparable to that of three different isogenic Sap deletion mutants. Furthermore, gp41 binding to the yeast killer toxin-susceptible C. albicans strain 10S was not inhibitable by an anti-YKT receptor antibody. In conclusion, HIV-1 interacts with different clinically important Candida spp., and may thereby affect the outcome of the respective fungal infection.  相似文献   

7.
Saville  Stephen P.  Cleary  Ian A. 《Mycopathologia》2021,186(1):103-107
Mycopathologia - In Candida albicans, geldanamycin treatment inhibits the essential chaperone Hsp90 and induces a change from yeast to filamentous morphology, likely by impeding cell cycle...  相似文献   

8.
9.
Hsp90 potentiates the evolution of azole resistance in the model yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans via calcineurin. Here, we explored effectors downstream of calcineurin regulating this Hsp90-dependent trait. Using S. cerevisiae erg3 mutants as a model, we determined that both Crz1 and Hph1 modulate azole resistance.  相似文献   

10.
The effects of the nonionic surfactant nonylphenol on the growth and morphologies of the filamentous fungus Neurospora crassa and the diploid yeast Candida albicans have been examined. Nonylphenol inhibited respiration and growth of N. crassa, effecting a 10-fold decrease in organism yield at 25 microM. Severe morphological defects were also induced: cell shape was abnormal and apical dominance was lost. Nonylphenol monoethoxylate (the parent compound of nonylphenol) was a less potent growth inhibitor and morphogen. The growth of the yeast form of C. albicans was sensitive to nonylphenol (inducing an order of magnitude decrease in specific growth rate with a 10-fold increase in dose concentration) but not nonylphenol monoethoxylate. Similarly, C. albicans ATP content was reduced and glucose-induced extracellular acidification was inhibited only by nonylphenol. Although estrogens may induce the dimorphic transition of C. albicans, nonylphenol (as an environmental estrogen mimic) failed to trigger germ tube formation under nonpermissive conditions and inhibited it under permissive conditions. The effects of nonylphenol are most readily explained as the result of uncoupling of respiration, which produces multiple physiological effects.  相似文献   

11.
Abstract Saccharomyces cerevisiae , a yeast of low pathogenic potential, is a rare but well-documented cause of invasive infections in humans. The yeast Candida albicans is a much commoner cause of significant and life-threatening infections. In such infections the heat shock protein hsp90 is an immunodominant antigen associated with protective humoral immunity. In this study it was shown that over-expression of S. cerevisiae hsp90, the amino acid sequence of which shows 84% identity to C. albicans hsp90, significantly increased the virulence of a laboratory strain of S. cerevisiae in mice, both in terms of colony counts in the kidney, liver and spleen, and in terms of mortality. This is the first direct evidence that hsp90 is a virulence factor.  相似文献   

12.
The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised individuals. The capacity of C. albicans to transition between morphological states is a key determinant of its ability to cause life-threatening infection. Recently the molecular chaperone heat shock protein 90 (Hsp90) was implicated as a major regulator of temperature-dependent C. albicans morphogenesis; compromising Hsp90 function induces filamentation and relieves repression of Ras1-protein kinase A (PKA) signaling, although the mechanism involved remains unknown. Here we demonstrate that filaments generated by compromise of Hsp90 function are neither pseudohyphae nor hyphae but closely resemble filaments formed in response to cell cycle arrest. Closer examination revealed that these filaments exhibit a delay in mitotic exit mediated by the checkpoint protein Bub2. Furthermore, Hsp90 inhibition also led to a distinct morphology with defects in cytokinesis. We found that the cyclin-dependent kinase Cdc28 was destabilized in response to depletion of Hsp90 and that Cdc28 physically interacts with Hsp90, implicating this major cell cycle regulator as a novel Hsp90 client protein in C. albicans. Taken together, our results suggest that Hsp90 is instrumental in the regulation of cell division during yeast-form growth in C. albicans and exerts its major effects during late cell cycle events.  相似文献   

13.
The ATP-dependent molecular chaperone Hsp90 is an essential and abundant stress protein in the eukaryotic cytosol that cooperates with a cohort of cofactors/cochaperones to fulfill its cellular tasks. We have identified Aha1 (activator of Hsp90 ATPase) and its relative Hch1 (high copy Hsp90 suppressor) as binding partners of Hsp90 in Saccharomyces cerevisiae. By using genetic and biochemical approaches, the middle domain of Hsp90 (amino acids 272-617) was found to mediate the interaction with Aha1 and Hch1. Data base searches revealed that homologues of Aha1 are conserved from yeast to man, whereas Hch1 was found to be restricted to lower eukaryotes like S. cerevisiae and Candida albicans. In experiments with purified proteins, Aha1 but not Hch1 stimulated the intrinsic ATPase activity of Hsp90 5-fold. To establish their cellular role further, we deleted the genes encoding Aha1 and Hch1 in S. cerevisiae. In vivo experiments demonstrated that Aha1 and Hch1 contributed to efficient activation of the heterologous Hsp90 client protein v-Src. Moreover, Aha1 and Hch1 became crucial for cell viability under non-optimal growth conditions when Hsp90 levels are limiting. Thus, our results identify a novel type of cofactor involved in the regulation of the molecular chaperone Hsp90.  相似文献   

14.
15.
G1 cyclins coordinate environmental conditions with growth and differentiation in many organisms. In the pathogen Candida albicans, differentiation of hyphae is induced by environmental cues but in a cell cycle-independent manner. Intriguingly, repressing the G1 cyclin Cln3p under yeast growth conditions caused yeast cells to arrest in G1, increase in size, and then develop into hyphae and pseudohyphae, which subsequently resumed the cell cycle. Differentiation was dependent on Efg1p, Cph1p, and Ras1p, but absence of Ras1p was also synthetically lethal with repression of CLN3. In contrast, repressing CLN3 in environment-induced hyphae did not inhibit growth or the cell cycle, suggesting that yeast and hyphal cell cycles may be regulated differently. Therefore, absence of a G1 cyclin can activate developmental pathways in C. albicans and uncouple differentiation from the normal environmental controls. The data suggest that the G1 phase of the cell cycle may therefore play a critical role in regulating hyphal and pseudohyphal development in C. albicans.  相似文献   

16.
Cyclophilin 40, a divergent loop cyclophilin first identified in association with the estrogen receptor α, contains a C-terminal tetratricopeptide repeat domain through which it shares structural identity with FK506-binding protein 52 (FKBP52) and other partner cochaperones in steroid receptor-heat shock protein 90 (Hsp90) complexes. By dynamically competing for Hsp90 interaction, the cochaperones allow the receptors to establish distinct Hsp90-chaperone complexes, with the potential to exert tissue-specific control over receptor activity. Cyclophilin 40 regulates Hsp90 ATPase activity during receptor-Hsp90 assembly. Functional deletion of the cyclophilin 40 yeast homologue, Cpr7, adversely affected estrogen receptor α and glucocorticoid receptor activity that could be fully restored, either with wild type Cpr7 or Cpr7 with a cyclophilin domain lacking isomerase activity. We draw parallels with the mechanism already established for FKBP52 and propose that the cyclophilin 40 divergent loop interfaces with a contact surface on the steroid receptor ligand-binding domain to achieve an optimal orientation for receptor activity.  相似文献   

17.
Control of estrogen receptor ligand binding by Hsp90   总被引:7,自引:0,他引:7  
The molecular chaperone Hsp90 interacts with unliganded steroid hormone receptors and regulates their activity. We have analyzed the function of yeast and mammalian Hsp90 in regulating the ability of the human estrogen receptor (ER) to bind ligands in vivo and in vitro. Using the yeast system, we show that the ER expressed in several different hsp82 mutant strains binds reduced amounts of the synthetic estrogen diethylstilbestrol compared to the wild type. This defect in hormone binding occurs without any significant change in the steady state levels of ER protein. To analyze the role of mammalian Hsp90, we synthesized the human ER in rabbit reticulocyte lysates containing geldanamycin, an Hsp90 inhibitor. At low concentrations of geldanamycin we observed reduced levels of hormone binding by the ER. At higher concentrations, we found reduced synthesis of the receptor. These data indicate that Hsp90 functions to maintain the ER in a high affinity hormone-binding conformation.  相似文献   

18.
19.
To understand how the molecular chaperone Hsp90 participates in conformational maturation of the estrogen receptor (ER), we analyzed the interaction of immobilized purified avian Hsp90 with mammalian cytosolic ER. Hsp90 was either immunoadsorbed to BF4 antibody-Sepharose or GST-Hsp90 fusion protein (GST.90) was adsorbed to glutathione-Sepharose. GST.90 was able to retain specifically ER, similarly to immunoadsorbed Hsp90. When cells were treated with estradiol and the hormone treatment was maintained during cell homogenization, binding, and washing steps, GST.90 still interacted efficiently with ER, suggesting that ER may form complexes with Hsp90 even after its activation by hormone and salt extraction from nuclei. The GST.90-ER interaction was consistently reduced in the presence of increasing concentrations of potassium chloride or when cytosolic ER-Hsp90 complexes were previously stabilized by molybdate, indicating that GST.90-ER complexes behave like cytosolic Hsp90-ER complexes. A purified thioredoxin-ER fusion protein was also able to form complexes with GST.90, suggesting that the presence of other chaperones is not required. ER was retained only by GST.90 deletion mutants bearing an intact Hsp90 N-terminal region (1-224), the interaction being more efficient when the charged region A was present in the mutant (1-334). The N-terminal fragment 1-334, devoid of the dimeric GST moiety, was also able to interact with ER, pointing to the monomeric N-terminal adenosine triphosphate binding region of Hsp90 (1-224) as the region necessary and sufficient for interaction. These results contribute to understand the Hsp90-dependent process responsible for conformational competence of ER.  相似文献   

20.
Culture medium affected the virulence of a strain of Candida albicans toward Galleria mellonella larvae, but the yeast growth rates in yeast extract - peptone - dextrose broth and synthetic Galleria serum were not correlated with yeast virulence. Virulent C. albicans grew rapidly in larval serum, whereas, it limited nodulation and continued development in vivo, producing toxins that damaged the hemocytes and fat body. Nonpathogenic yeast-phase cells grew slowly in larval serum but induced extensively melanized nodules in vivo and developed no further. There was no discernible relationship in 14 exo-enzymes between the virulent and avirulent yeast strains and virulence. The avirulent myosin-I-defective yeast cells were rapidly removed from the hemolymph in vivo because of lysozyme-mediated yeast agglutination and the possible binding of the yeast cells by lysozyme and apolipophorin-III. Both lysozyme and apolipophorin-III are proteins that bind beta-1,3-glucan. Finally, insects with nonpathogenic C. albicans exhibited induced immunity and were more resistant to candidiasis from the wild-type yeast cells than were noninduced insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号