首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition.  相似文献   

2.
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.  相似文献   

3.
Transfection of either the alpha(1b)-adrenoreceptor or Galpha(11) into a fibroblast cell line derived from a Galpha(q)/Galpha(11) double knockout mouse failed to produce elevation of intracellular [Ca(2+)] upon the addition of agonist. Co-expression of these two polypeptides, however, produced a significant stimulation. Co-transfection of the alpha(1b)-adrenoreceptor with the palmitoylation-resistant C9S,C10S Galpha(11) also failed to produce a signal, and much reduced and kinetically delayed signals were obtained using either C9S Galpha(11) or C10S Galpha(11). Expression of a fusion protein between the alpha(1b)-adrenoreceptor and Galpha(11) allowed [Ca(2+)](i) elevation, and this was also true for a fusion protein between the alpha(1b)-adrenoreceptor and C9S,C10S Galpha(11), since this strategy ensures proximity of the two polypeptides at the cell membrane. For both fusion proteins, co-expression of transducin alpha, as a beta.gamma-sequestering agent, fully attenuated the Ca(2+) signal. Both of these fusion proteins and one in which an acylation-resistant form of the receptor was linked to wild type Galpha(11) were also targets for agonist-regulated [(3)H]palmitoylation and bound [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) in an agonist concentration-dependent manner. The potency of agonist to stimulate [(35)S]GTPgammaS binding was unaffected by the palmitoylation potential of either receptor or G protein. These studies provide clear evidence for coordinated, agonist-mediated regulation of the post-translational acylation of both a receptor and partner G protein and demonstrate the capacity of such fusions to bind and then release beta.gamma complex upon agonist stimulation whether or not the G protein can be palmitoylated. They also demonstrate that Ca(2+) signaling in EF88 cells by such fusion proteins is mediated via release of the G protein beta.gamma complex.  相似文献   

4.
Although only 16 genes have been identified in mammals, several Galpha subunits can be simultaneously activated by G protein-coupled receptors (GPCRs) to modulate their complicated functions. Current GPCR assays are limited in the evaluation of selective Galpha activation, thus not allowing a comprehensive pathway screening. Because adenylyl cyclases are directly activated by G(s)alpha and the carboxyl termini of the various Galpha proteins determine their receptor coupling specificity, we proposed a set of chimeric G(s)alpha where the COOH-terminal five amino acids are replaced by those of other Galpha proteins and used these to dissect the potential Galpha linked to a given GPCR. Unlike G(q)alpha, G(12)alpha, and G(i)alpha outputs, compounding the signals from several Galpha members, the chimeric G(s)alpha proteins provide a superior molecular approach that reflects the previously uncharacterized pathways of GPCRs under the same cAMP platform. This is, to our knowledge, the first time allowing verification of the whole spectrum of Galpha coupling preference of adenosine A1 receptor, reported to couple to multiple G proteins and modulate many physiological processes. Furthermore, we were able to distinguish the uncharacterized pathways between the two neuromedin U receptors (NMURs), which distribute differently but are stimulated by a common agonist. In contrast to the G(q) signals mainly conducted by NMUR1, NMUR2 routed preferentially to the G(i) pathways. Dissecting the potential Galpha coupling to these GPCRs will promote an understanding of their physiological roles and benefit the pharmaceutical development of agonists/antagonists by exploiting the selective affinity toward a certain Galpha subclass.  相似文献   

5.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

6.
7.
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.  相似文献   

8.
In C. elegans, a G(o)/G(q) signaling network regulates locomotion and egg laying [1-8]. Genetic analysis shows that activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is suppressed by perturbations of this network, which include loss of the GOA-1 G(o)alpha, DGK-1 diacylglycerol kinase, EAT-16 G protein gamma subunit-like (GGL)-containing RGS protein, or an unidentified protein encoded by the gene eat-11 [9]. We cloned eat-11 and report that it encodes the Gbeta(5) ortholog GPB-2. Gbeta(5) binds specifically to GGL-containing RGS proteins, and the Gbeta(5)/RGS complex can promote the GTP-hydrolyzing activity of Galpha subunits [10, 11]. However, little is known about how this interaction affects G protein signaling in vivo. In addition to EAT-16, the GGL-containing RGS protein EGL-10 participates in G(o)/G(q) signaling; EGL-10 appears to act as an RGS for the GOA-1 G(o)alpha, while EAT-16 appears to act as an RGS for the EGL-30 G(q)alpha [4, 5]. We have combined behavioral, electrophysiological, and pharmacological approaches to show that GPB-2 is a central member of the G(o)/G(q) network and that GPB-2 may interact with both the EGL-10 and EAT-16 RGS proteins to mediate the opposing activities of G(o)alpha and G(q)alpha. These interactions provide a mechanism for the modulation of behavior by antagonistic G protein networks.  相似文献   

9.
In the liver, pancreastatin exerts a glycogenolytic effect through interaction with specific receptors, followed by activation of phospholipase C and guanylate cyclase. Pancreastatin receptor seems to be coupled to two different G protein systems: a pertussis toxin-insensitive G protein that mediates activation of phospholipase C, and a pertussis toxin sensitive G protein that mediates the cyclic GMP production. The aim of this study was to identify the specific G protein subtypes coupling pancreastatin receptors in rat liver membranes. GTP binding was determined by using gamma-35S-GTP; specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Activation of G proteins was demonstrated by the incorporation of the photoreactive GTP analogue 8-azido-alpha-32P-GTP into liver membranes and into specific immunoprecipitates of different Galpha subunits from soluble rat liver membranes. Pancreastatin stimulation of rat liver membranes increases the binding of gamma-35S-GTP in a time- and dose-dependent manner. Activation of the soluble receptors still led to the pancreastatin dose-dependent stimulation of gamma-35S-GTP binding. Besides, WGA semipurified receptors also stimulates GTP binding. The binding was inhibited by treatment with anti-Galphaq/11 (85%) and anti-Galphai1,2 (15%) sera, whereas anti-Galphao,i3 serum failed to affect the binding. Finally, pancreastatin stimulates GTP photolabeling of particulate membranes. Moreover, it specifically increased the incorporation of 8-azido-alpha-32P-GTP into Galphaq/11 and Galpha, but not into Galphao,i3 from soluble rat liver membranes. In conclusion, pancreastatin stimulation of rat liver membranes led to the activation of Galphaq/11 and Galphai1,2 proteins. These results suggest that Galphaq/11 and Galphai1,2 may play a functional role in the signaling of pancreastatin receptor by mediating the production of IP3 and cGMP respectively.  相似文献   

10.
G proteins transmit a variety of extracellular signals into intracellular responses. The Galpha and Gbetagamma subunits are both known to regulate effectors. Interestingly, the Galpha subunit also determines subtype specificity of Gbetagamma effector interactions. However, in light of the common paradigm that Galpha and Gbetagamma subunits dissociate during activation, a plausible mechanism of how this subtype specificity is generated was lacking. Using a fluorescence resonance energy transfer (FRET)-based assay developed to directly measure mammalian G protein activation in intact cells, we demonstrate that fluorescent Galpha(i1,2,3), Galpha(z), and Gbeta(1)gamma(2) subunits do not dissociate during activation but rather undergo subunit rearrangement as indicated by an activation-induced increase in FRET. In contrast, fluorescent Galpha(o) subunits exhibited an activation-induced decrease in FRET, reflecting subunit dissociation or, alternatively, a distinct subunit rearrangement. The alpha(B/C)-region within the alpha-helical domain, which is much more conserved within Galpha(i1,2,3) and Galpha(z) as compared with that in Galpha(o), was found to be required for exhibition of an activation-induced increase in FRET between fluorescent Galpha and Gbetagamma subunits. However, the alpha(B/C)-region of Galpha(il) alone was not sufficient to transfer the activation pattern of Galpha(i) to the Galpha(o) subunit. Either residues in the first 91 amino acids or in the C-terminal remainder (amino acids 93-354) of Galpha(il) together with the alpha(B/C)-helical region of Galpha(i1) were needed to transform the Galpha(o)-activation pattern into a Galpha(i1)-type of activation. The discovery of subtype-selective mechanisms of G protein activation illustrates that G protein subfamilies have specific mechanisms of activation that may provide a previously unknown basis for G protein signaling specificity.  相似文献   

11.
Protein kinase D (PKD/PKCmu) immunoprecipitated from COS-7 cells transiently transfected with a constitutively active alpha subunit of G(q) (Galpha(q)Q209L) exhibited a marked increase in basal activity, which was not further enhanced by treatment of the cells with phorbol 12,13-dibutyrate. In contrast, transient transfection of COS-7 cells with activated Galpha(12)Q229L or Galpha(13)Q226L neither promoted PKD activation nor interfered with the increase of PKD activity induced by phorbol 12,13-dibutyrate. The addition of aluminum fluoride to cells co-transfected with PKD and wild type Galpha(q) induced a marked increase in PKD activity, which was comparable with that induced by expression of Galpha(q)Q209L. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 prevented the increase in PKD activity induced by aluminum fluoride. Expression of a COOH-terminal fragment of Galpha(q) that acts in a dominant negative fashion attenuated PKD activation in response to agonist stimulation of bombesin receptor. PKD activation in response to either Galpha(q) or bombesin was completely prevented by mutation of Ser(744) and Ser(748) to Ala in the kinase activation loop of PKD. Our results show that Galpha(q) activation is sufficient to stimulate sustained PKD activation via protein kinase C and indicate that the endogenous Galpha(q) mediates PKD activation in response to acute bombesin receptor stimulation.  相似文献   

12.
Agonist-stimulated high affinity GTPase activity of fusion proteins between the alpha(2A)-adrenoreceptor and the alpha subunits of forms of the G proteins G(i1), G(i2), G(i3), and G(o1), modified to render them insensitive to the action of pertussis toxin, was measured following transient expression in COS-7 cells. Addition of a recombinant regulator of G protein signaling protein, RGS4, did not significantly affect basal GTPase activity nor agonist stimulation of the fusion proteins containing Galpha(i1) and Galpha(i3) but markedly enhanced agonist-stimulation of the proteins containing Galpha(i2) and Galpha(o1.) The effect of RGS4 on the alpha(2A)-adrenoreceptor-Galpha(o1) fusion protein was concentration-dependent with EC(50) of 30 +/- 3 nm and the potency of the receptor agonist UK14304 was reduced 3-fold by 100 nm RGS4. Equivalent reconstitution with Asn(88)-Ser RGS4 failed to enhance agonist function on the alpha(2A)-adrenoreceptor-Galpha(o1) or alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins. Enzyme kinetic analysis of the GTPase activity of the alpha(2A)-adrenoreceptor-Galpha(o1) and alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins demonstrated that RGS4 both substantially increased GTPase V(max) and significantly increased K(m) of the fusion proteins for GTP. The increase in K(m) for GTP was dependent upon RGS4 amount and is consistent with previously proposed mechanisms of RGS function. Agonist-stimulated GTPase turnover number in the presence of 100 nm RGS4 was substantially higher for alpha(2A)-adrenoreceptor-Galpha(o1) than for alpha(2A)-adrenoreceptor-Galpha(i2). These studies demonstrate that although RGS4 has been described as a generic stimulator of the GTPase activity of G(i)-family G proteins, selectivity of this interaction and quantitative variation in its function can be monitored in the presence of receptor activation of the G proteins.  相似文献   

13.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

14.
The interaction of activated G protein-coupled receptors with G proteins is a key event in signal transduction. Here, using a fluorescence resonance energy transfer (FRET)-based assay, we measure directly and in living cells the interaction of YFP-labeled alpha(2A)-adrenergic receptors with CFP-labeled G proteins. Upon agonist stimulation, a small, concentration-dependent increase in FRET was observed. No specific basal FRET was detected in the absence of agonist. Kinetics of the onset of receptor/G protein interaction were <100 ms and depended on expression levels of Galpha. Simultaneously recorded G protein-regulated inwardly rectifying K(+) channel currents revealed a maximal current response already at agonist concentrations producing submaximal FRET amplitudes. By analyzing FRET signals in the presence of a Galpha mutant, which dissociates more slowly from activated receptors, it was demonstrated that only a fraction of wild-type G proteins interacts with the activated receptor at any time. Our data suggest that alpha(2A)-adrenergic receptors and G proteins interact by rapid collision coupling and indicate that there is no significant precoupling between these receptors and G proteins.  相似文献   

15.
Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.  相似文献   

16.
The aim of this work was to sample the diversity of G protein alpha subunits in lepidopteran insect cell lines. Here we report the amplification by degenerate PCR of partial sequences representing six G protein alpha subunits from three different lepidopteran insect cell lines. Sequence comparisons with known G protein alpha subunits indicate that the Sf9, Ld and High Five cell lines each contain (at least) one Galpha(q)-like and one Galpha(i)-like Galpha subunit. All six PCR products are unique at the nucleotide level, but the translation products of the three Galpha q-like partial clones (Sf9-Galpha 1, Ld-Galpha 1, and Hi5-Galpha 1) are identical, as are the translation products of the three Galpha i-like partial clones (Sf9-Galpha 2, Ld-Galpha 2, and Hi5-Galpha 2). Both the Galpha(q)-like and Galpha(i)-like translation products are identical to known Galpha subunits from other Lepidoptera, are highly similar (88-98%) to Galpha subunits from other invertebrates including mosquitoes, fruit flies, lobsters, crabs, and snails, and are also highly similar (88-90%) to known mammalian Galpha subunits. Identification of G protein alpha subunits in lepidopteran cell lines will assist in host cell line selection when insect cell lines are used for the pharmacological analysis of human GPCRs.  相似文献   

17.
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  相似文献   

18.
Co-expression of the alpha(1b)-adrenoreceptor and Galpha(11) in cells derived from a Galpha(q)/Galpha(11) knock-out mouse allows agonist-mediated elevation of intracellular Ca(2+) levels that is transduced by beta/gamma released from the G protein alpha subunit. Mutation of Tyr(356) of Galpha(11) to Phe, within a receptor contact domain, had little effect on function but this was reduced greatly by alteration to Ser and virtually eliminated by conversion to Asp. This pattern was replicated following incorporation of each form of Galpha(11) into fusion proteins with the alpha(1b)-adrenoreceptor. Following a [(35)S]guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding assay, immunoprecipitation of the wild type alpha(1b)-adrenoreceptor-Galpha(11) fusion protein indicated that the agonist phenylephrine stimulated guanine nucleotide exchange on Galpha(11) more than 30-fold. Information transfer by agonist was controlled in residue 356 Galpha(11) mutants with rank order Tyr > Phe > Trp > Ile > Ala = Gln = Arg > Ser > Asp, although these alterations did not alter the binding affinity of either phenylephrine or an antagonist ligand. Mutation of a beta/gamma contact interface in the alpha(1b)-adrenoreceptor-Tyr(356) Galpha(11) fusion protein did not alter ligand binding affinity but did reduce greatly beta/gamma binding and phenylephrine stimulation of [(35)S]GTPgammaS binding. It also prevented agonist elevation of intracellular Ca(2+) levels, as did a mutation in Galpha(11) that prevents G protein subunit dissociation. These results indicate that a bulky aromatic group is required four amino acids from the C terminus of Galpha(11) to maximize information transfer from an agonist-occupied receptor and disprove the hypothesis that tyrosine phosphorylation of this residue is required for G protein activation (Umemori, H., Inoue, T., Kume, S., Sekiyama, N., Nagao, M., Itoh, H., Nakanishi, S., Mikoshiba, K., and Yamamoto, T. (1997) Science 276, 1878-1881). This is distinct from Galpha(i1), where hydrophobicity of the amino acid is the key determinant at this location. They also further demonstrate a key role for the beta/gamma complex in enhancing receptor to G protein alpha subunit information transfer.  相似文献   

19.
The blockade of heptahelical receptor coupling to heterotrimeric G proteins by the expression of peptides derived from G protein Galpha subunits represents a novel means of simultaneously inhibiting signals arising from multiple receptors that share a common G protein pool. Here we examined the mechanism of action and functional consequences of expression of an 83-amino acid polypeptide derived from the carboxyl terminus of Galpha(s) (GsCT). In membranes prepared from GsCT-expressing cells, the peptide blocked high affinity agonist binding to beta(2) adrenergic receptors (AR) and inhibited beta(2)AR-induced [35S]GTPgammaS loading of Galpha(s). GsCT expression inhibited beta(2)AR- and dopamine D(1A) receptor-mediated cAMP production, without affecting the cellular response to cholera toxin or forskolin, indicating that the peptide inhibited receptor-G(s) coupling without impairing G protein or adenylyl cyclase function. [35S]GTPgammaS loading of Galpha(q/11) by alpha(1B)ARs and Galpha(i) by alpha(2A)ARs and G(q/11)- or G(i)-mediated phosphatidylinositol hydrolysis was unaffected, indicating that the inhibitory effects of GsCT were selective for G(s). We next employed the GsCT construct to examine the complex role of G(s) in regulation of the ERK mitogen-activated protein kinase cascade, where activation of the cAMP-dependent protein kinase (PKA) pathway reportedly produces both stimulatory and inhibitory effects on heptahelical receptor-mediated ERK activation. For the beta(2)AR in HEK-293 cells, where PKA activity is required for ERK activation, expression of GsCT caused a net inhibition of ERK activation. In contrast, alpha(2A)AR-mediated ERK activation in COS-7 cells was enhanced by GsCT expression, consistent with the relief of a downstream inhibitory effect of PKA. ERK activation by the G(q/11)-coupled alpha(1B)AR was unaffected by GsCT. These findings suggest that peptide G protein inhibitors can provide insights into the complex interplay between G protein pools in cellular regulation.  相似文献   

20.
Both the alpha1b-adrenoceptor and Galpha11 are targets for post-translational thio-acylation that is regulated by agonist occupancy of the receptor [P.A. Stevens, J. Pediani, J.J. Carrillo, G. Milligan, J. Biol. Chem. 276 (2001) 35883]. In co-expression studies mutation of the sites of thio-acylation in the G protein or treatment of cell membranes with hydroxylamine greatly reduced agonist stimulation of guanosine 5'-[gamma-[35S]thio]triphosphate ([35S]GTPgammaS) binding. In alpha1b-adrenoceptor-Galpha11 fusion proteins mutation of thio-acylation sites in receptor or G protein did not alter the binding affinity of the antagonist [3H]prazosin or the agonist phenylephrine. Although the potency of phenylephrine to stimulate binding of [35S]GTPgammaS to alpha1b-adrenoceptor-Galpha11 fusion proteins was unaffected by the thio-acylation potential of either element, the maximal effect was reduced by some 50% when the G protein but not the receptor was mutated to prevent thio-acylation. This reflected lack of thio-acylation of the G protein rather than mutation of Cys9 and Cys10 to Ser because treatment with hydroxylamine mimicked this in fusions containing the wild type G protein but was without effect in those mutated to prevent thio-acylation. Mutation to reduce binding of beta/gamma to Galpha11 markedly reduced phenylephrine stimulation of [35S]GTPgammaS binding. Combination of mutations to prevent thio-acylation and beta/gamma binding did not, however, have an additive effect on [35S]GTPgammaS binding. These results indicate that the thio-acylation status of the alpha1b-adrenoceptor does not regulate G protein activation whereas thio-acylation of Galpha11 plays a key role in activation by the receptor beyond providing membrane association and proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号