首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

2.
Epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are co-localized in the apical membrane of many epithelia. These channels are essential for electrolyte and water secretion and/or reabsorption. In cystic fibrosis airway epithelia, a hyperactivated epithelial Na(+) conductance operates in parallel with defective Cl(-) secretion. Several groups have shown that CFTR down-regulates ENaC activity, but the mechanisms and the regulation of CFTR by ENaC are unknown. To test the hypothesis that ENaC and CFTR regulate each other, and to identify the region(s) of ENaC involved in the interaction between CFTR and ENaC, rENaC and its mutants were co-expressed with CFTR in Xenopus oocytes. Whole cell macroscopic sodium currents revealed that wild type (wt) alphabetagamma-rENaC-induced Na(+) current was inhibited by co-expression of CFTR, and further inhibited when CFTR was activated with a cAMP-raising mixture (CKT). Conversely, alphabetagamma-rENaC stimulated CFTR-mediated Cl(-) currents up to approximately 6-fold. Deletion mutations in the intracellular tails of the three rENaC subunits suggested that the carboxyl terminus of the beta subunit was required both for the down-regulation of ENaC by activated CFTR and the up-regulation of CFTR by ENaC. However, both the carboxyl terminus of the beta subunit and the amino terminus of the gamma subunit were essential for the down-regulation of rENaC by unstimulated CFTR. Interestingly, down-regulation of rENaC by activated CFTR was Cl(-)-dependent, while stimulation of CFTR by rENaC was not dependent on either cytoplasmic Na(+) or a depolarized membrane potential. In summary, there appear to be at least two different sites in ENaC involved in the intermolecular interaction between CFTR and ENaC.  相似文献   

3.
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.  相似文献   

4.
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.  相似文献   

5.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

6.
Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.  相似文献   

7.
The epithelial sodium channel (ENaC) and the secretory potassium channel (Kir1.1/ROMK) are expressed in the apical membrane of renal collecting duct principal cells where they provide the rate-limiting steps for Na(+) absorption and K(+) secretion. The cystic fibrosis transmembrane conductance regulator (CFTR) is thought to regulate the function of both ENaC and Kir1.1. We hypothesized that CFTR may provide a regulatory link between ENaC and Kir1.1. In Xenopus laevis oocytes co-expressing both ENaC and CFTR, the CFTR currents were 3-fold larger than those in oocytes expressing CFTR alone due to an increased expression of CFTR in the plasma membrane. ENaC was also able to increase Kir1.1 currents through an increase in surface expression, but only in the presence of CFTR. In the absence of CFTR, co-expression of ENaC was without effect on Kir1.1. ENaC-mediated CFTR-dependent up-regulation of Kir1.1 was reduced with a Liddle's syndrome mutant of ENaC. Furthermore, ENaC co-expressed with CFTR was without effect on the closely related K(+) channel, Kir4.1. We conclude that ENaC up-regulates Kir1.1 in a CFTR-dependent manner. CFTR may therefore provide the mechanistic link that mediates the coordinated up-regulation of Kir1.1 during the stimulation of ENaC by hormones such as aldosterone or antidiuretic hormone.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR) in addition to its well defined Cl(-) channel properties regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and non-epithelial cells, whereas the presence of ENaC increases CFTR functional expression. This interregulation is reproduced in Xenopus oocytes where both the open probability and surface expression of wild type CFTR Cl(-) channels are increased when CFTR is co-expressed with alphabetagamma-mouse ENaC (mENaC) and conversely when the activity of mENaC is inhibited after wild type CFTR activation. Using the Xenopus oocyte expression system, different functional regulatory interactions were observed between G551D-CFTR and alphabetagamma-mENaC. The co-expression of G551D-CFTR and alphabetagamma-mENaC resulted in a 5-fold increase in G551D-CFTR Cl(-) current compared with oocytes expressing G551D-CFTR alone. Oocytes co-injected with both G551D-CFTR and ENaC expressed an amiloride-sensitive whole cell current that was similar to that observed before and after G551D-CFTR activation with forskolin/isobutylmethylxanthine. Treatment with genistein both enhanced the functional expression of G551D-CFTR and improved regulatory interactions between G551D-CFTR and ENaC. These data suggest that genistein may be useful in patients with cystic fibrosis and the G551D-CFTR mutation.  相似文献   

9.
10.
Epithelial Na+ channels (ENaC) are inhibited by the cystic fibrosis transmembrane conductance regulator (CFTR) upon activation by protein kinase A. It is, however, still unclear how CFTR regulates the activity of ENaC. In the present study we examined whether CFTR interacts with ENaC by interfering with the Nedd4- and ubiquitin-mediated endocytosis of ENaC. Various C-terminal mutations were introduced into the three alpha-, beta-, and gamma-subunits of the rat epithelial Na+ channel, thereby eliminating PY motifs, which are important binding domains for the ubiquitin ligase Nedd4. When expressed in Xenopus oocytes, most of the ENaC stop (alpha-H647X, beta-P565X, gamma-S608X) or point (alpha-P671A, beta-Y618A, gamma-P(624-626)A) mutations induced enhanced Na+ currents when compared with wild type alpha,beta,gamma-rENaC. However, ENaC currents formed by either of the mutant alpha-, beta-, or gamma-subunits were inhibited during activation of CFTR by forskolin (10 micromol/l) and 3-isobutyl-1-methylxanthine (1 mmol/l). Antibodies to dynamin or ubiquitin enhanced alpha,beta,gamma-rENaC whole cell Na+ conductance but did not interfere with inhibition of ENaC by CFTR. Another mutant, beta-T592M,T593A-ENaC, also showed enhanced Na+ currents, which were down-regulated by CFTR. Moreover, activation of ENaC by extracellular proteases and xCAP1 does not disturb CFTR-dependent inhibition of ENaC. We conclude that regulation of ENaC by CFTR is distal to other regulatory limbs and does not involve Nedd4-dependent ubiquitination.  相似文献   

11.
The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o? model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o? parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, "near-silent" ENaC caused an additional increase in amiloride-sensitive I(sc) in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive I(sc) in CFBE41o? cells that stably express wild-type (wt) CFTR. CFBE41o? wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o? wt cells did not stimulate amiloride-sensitive I(sc), suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.  相似文献   

12.
The activities of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel and the amiloride-sensitive epithelial Na(+) channel (ENaC) are acutely coordinated in the sweat duct. However, the mechanisms responsible for cross-talk between these ion channels are unknown. Previous studies indicated that luminal pH of sweat ducts varies over 3 pH units and that the cytoplasmic pH affects both CFTR and ENaC. Therefore, using basolaterally alpha-toxin-permeabilized apical membrane preparations of sweat ducts as an experimental system, we tested the hypothesis that the cytosolic pH may mediate the cross-talk between CFTR and ENaC. We showed that while luminal pH had no effect, cytosolic pH acutely affected ENaC activity. That is, acidic pH inhibited, while basic pH activated, ENaC. pH regulation of ENaC appears to be independent of CFTR or endogenous kinase activities because basic pH independently stimulated ENaC (1) in normal ducts even when CFTR was deactivated, (2) in CF ducts that lack CFTR in the plasma membranes and (3) after blocking endogenous kinase activity with staurosporine. Considering the evidence of Na(+)/H(+) exchange (NHE) activity as shown by the expression of mRNA and function of NHE in the basolateral membrane of the sweat duct, we postulate that changes in cytosolic Na(+) ([Na(+)]( i )) may alter cytosolic pH (pH( i )) as salt loads into the cell during electrolyte absorption. These changes may play a role in coordinating the activities of ENaC and CFTR during transepithelial salt transport.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its Cl(-) channel properties, has regulatory interactions with other epithelial ion channels including the epithelial Na(+) channel (ENaC). Both the open probability and surface expression of wild type CFTR Cl(-) channels are increased significantly when CFTR is co-expressed in Xenopus oocytes with alphabetagamma-ENaC, and conversely, the activity of ENaC is inhibited following wild type CFTR activation. Using the Xenopus oocyte expression system, a lack of functional regulatory interactions between DeltaF508-CFTR and ENaC was observed following activation of DeltaF508-CFTR by forskolin and isobutylmethylxanthine (IBMX). Whole cell currents in oocytes expressing ENaC alone decreased in response to genistein but increased in response to a combination of forskolin and IBMX followed by genistein. In contrast, ENaC currents in oocytes co-expressing ENaC and DeltaF508-CFTR remained stable following stimulation with forskolin/IBMX/genistein. Furthermore, co-expression of DeltaF508-CFTR with ENaC enhanced the forskolin/IBMX/genistein-mediated activation of DeltaF508-CFTR. Our data suggest that genistein restores regulatory interactions between DeltaF508-CFTR and ENaC and that combinations of protein repair agents, such as 4-phenylbutyrate and genistein, may be necessary to restore DeltaF508-CFTR function in vivo.  相似文献   

14.
Cl- interference with the epithelial Na+ channel ENaC   总被引:2,自引:0,他引:2  
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl- channel properties, regulates other ion channels. CFTR inhibits murine or rat epithelial Na+ channel (mENaC or rENaC) currents in many epithelial and non-epithelial cells, whereas murine or rat ENaC increases CFTR functional expression. These regulatory interactions are reproduced in Xenopus oocytes where both the open probability and surface expression of wild type CFTR Cl- channels are increased when CFTR is co-expressed with alphabetagamma mENaC, and conversely the activity of mENaC is inhibited after wild type CFTR activation. Using the Xenopus oocyte expression system, differences in functional regulatory interactions were observed when CFTR was co-expressed with either alphabetagamma mENaC or alphabetagamma human ENaC (hENaC). Co-expression of CFTR and alphabetagamma mENaC or hENaC resulted in an approximately 3-fold increase in CFTR Cl- current compared with oocytes expressing CFTR alone. Oocytes co-injected with both CFTR and mENaC or hENaC expressed an amiloride-sensitive whole cell current that was decreased compared with that observed with the injection of mENaC or hENaC alone before CFTR activation with forskolin/3-isobutyl-1-methylxanthine. CFTR activation resulted in a further 50% decrease in mENaC-mediated currents, an approximately 20% decrease in alpha-T663-hENaC-mediated currents, and essentially no change in alpha-A663-hENaC-mediated currents. Changes in ENaC functional expression correlated with ENaC surface expression by oocyte surface biotinylation experiments. Assessment of regulatory interactions between CFTR and chimeric mouse/human ENaCs suggest that the 20 C-terminal amino acid residues of alpha ENaC confer species specificity regarding ENaC inhibition by activated CFTR.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and composition, we investigated whether this regulation was reciprocal by examining whether ENaC regulates CFTR. Co-expression of human (h) CFTR and mouse (m) alphabetagammaENaC in Xenopus oocytes resulted in a significant, 3.7-fold increase in whole-cell hCFTR Cl(-) conductance compared with oocytes expressing hCFTR alone. The forskolin/3-isobutyl-1-methylxanthine-stimulated whole-cell conductance in hCFTR-mENaC co-injected oocytes was amiloride-insensitive, indicating an inhibition of mENaC following hCFTR activation, and it was blocked by DPC (diphenylamine-2-carboxylic acid) and was DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid)-insensitive. Enhanced hCFTR Cl(-) conductance was also observed when either the alpha- or beta-subunit of mENaC was co-expressed with hCFTR, but this was not seen when CFTR was co-expressed with the gamma-subunit of mENaC. Single Cl(-) channel analyses showed that both CFTR Cl(-) channel open probability and the number of CFTR Cl(-) channels detected per patch increased when hCFTR was co-expressed with alphabetagammamENaC. We conclude that in addition to acting as a regulator of ENaC, CFTR activity is regulated by ENaC.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-activated chloride channel, which is regulated by protein-protein interactions. The extent to which CFTR is regulated by these interactions remains unknown. Annexin V is overexpressed in cystic fibrosis (CF), and given the functional properties of annexin V and CFTR we considered whether they are associated and if so whether this has implications for CFTR function. Using co-immunoprecipitation and overlay experiments, we show that annexin V is associated with nucleotide-binding domain 1 (NBD1) of CFTR. Surface plasmon resonance (SPR) indicated different KD values in the absence and presence of both calcium and ATP, suggesting that this interaction is calcium- and ATP-dependent. Using an siRNA approach and overexpression, we showed that CFTR chloride channel function and its localization in the cell membranes were dependent on annexin V expression. We concluded that annexin V is necessary for normal CFTR chloride channel activity. Furthermore, we show that CFTR and annexin V are partially co-distributed in normal epithelial cells in human bronchi. In conclusion, we show for the first time that annexin V is associated with CFTR and is involved in its function.  相似文献   

18.
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca2+-dependent Cl secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl and that stimulation by secretagogues enhances the intracellular Cl concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl secretion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

19.
The present study investigated the regional distribution and cyclic changes in the mRNA expression of epithelial Na+ channel (ENaC) subunit and cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in adult female mouse reproductive tract. In situ hybridization revealed that in contrast to the abundant expression of CFTR, ENaC (alpha, beta, gamma) mRNA signal was not detected throughout the estrus cycle in the ovary and oviduct. Messenger RNA for all ENaC subunits was abundantly detected in the cervical and vaginal epithelia throughout the estrus cycle but for CFTR, mRNA was found only at proestrus. In the uterine epithelium, alphaENaC mRNA was detected at diestrus but not found at any other stage, while CFTR mRNA was only detected at early estrus but not other stages. Semi-quantitative RT-PCR detected mRNA for all ENaC subunits in the uterus throughout the cycle with maximal expression at diestrus and CFTR mRNA was only found in the early stages of the cycle. The involvement of ENaC and CFTR in Na+ absorption and Cl- secretion was demonstrated in cultured endometrial epithelia using the short-circuit current technique and found to be influenced by ovarian hormones. Taken together, these data indicate a main secretory role of the ovary and oviduct and a predominantly absorptive role of the cervix and vagina. The present results also suggest an ability of the uterus to secrete and absorb at different stages of the estrus cycle. Variations in the fluid profiles may be dictated by the regional and cyclic variations in expression of ENaC and CFTR and are likely to contribute to various reproductive events in different regions of the female reproductive tract.  相似文献   

20.
Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl(-) secretion and inhibit amiloride-sensitive Na(+) transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na(+) channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl(-) channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl(-) transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N(2),2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号