首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To explore the mechanisms of speech articulation, which is one of the most sophisticated human motor skills controlled by the central nervous system, we investigated the force-generation dynamics of the human speech articulator muscles [orbicularis oris superior (OOS) and inferior (OOI) muscles of the lips]. Short-pulse electrical stimulation (300 micros) with approximately three or four times the sensation threshold intensity of each subject induced the muscle response. The responses of these muscles were modeled as second-order dynamics with a time delay (TD), and the model parameters [natural frequency (NF), damping ratio (DR), and TD] were identified with a nonlinear least mean squares method. The OOS (NF: 6.1 Hz, DR: 0.71, TD: 14.5 ms) and OOI (NF: 6.1 Hz, DR: 0.68, TD: 15.6 ms) showed roughly similar characteristics in eight subjects. The dynamics in the tongue (generated by combined muscles) also showed similar characteristics (NF: 6.1 Hz, DR: 0.68, TD: 17.4 ms) in two subjects. The NF was higher, and the DR was lower than results measured for arm muscles (NF: 4.25 Hz, DR: 1.05, TD: 23.8 ms for triceps long head), indicating that articulatory organs adapt for more rapid movement. In contrast, slower response dynamics was estimated when muscle force data by voluntarily contraction task were used for force-generation dynamics modeling. We discuss methodological problems in estimating muscle dynamics when different kinds of muscle contraction methods are used.  相似文献   

2.
The dynamics of ubiquitin pools within cultured human lung fibroblasts   总被引:4,自引:0,他引:4  
The dynamics of ubiquitin pools within the cultured human lung fibroblast line IMR-90 were examined using solid phase immunochemical methods to quantitate free and conjugated polypeptide. Fetal calf serum was found to contain a nondialyzable factor that induced a transient accumulation of ubiquitin. During the induction, free and conjugated ubiquitin pools changed in concert so that the fraction conjugated remained constant. The induction of ubiquitin by the serum factor resulted from an enhanced rate of protein synthesis. Within experimental error no change in the first order rate constant for intracellular ubiquitin degradation was observed. Pulse-chase studies revealed ubiquitin to turn over with a half-life of 28-31 h in conditioned and freshly fed cultures. Withdrawal of serum from cultures led to a rapid decline in total ubiquitin during which the fractional level of conjugation remained constant. The accelerated ubiquitin turnover following removal of serum likely involves lysosomal autophagy since 10 mM NH4Cl led to an accumulation of the polypeptide. Since no similar effect of the lysosomotropic compound was observed in conditioned or freshly fed cultures, nonlysosomal processes are probably responsible for ubiquitin turnover under nutritional balance. The dynamics of these intracellular pools suggests that the ubiquitin ligation system is subject to regulatory constraints not previously suspected. The short half-life for ubiquitin is consistent with the apparent ability of cells to alter ubiquitin levels in response to external stimuli and stress.  相似文献   

3.
Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection. [BMB Reports 2014; 47(9): 475-482]  相似文献   

4.
UBPY: a growth-regulated human ubiquitin isopeptidase.   总被引:9,自引:0,他引:9       下载免费PDF全文
The ubiquitin pathway has been implicated in the regulation of the abundance of proteins that control cell growth and proliferation. We have identified and characterized a novel human ubiquitin isopeptidase, UBPY, which both as a recombinant protein and upon immunoprecipitation from cell extracts is able to cleave linear or isopeptide-linked ubiquitin chains. UBPY accumulates upon growth stimulation of starved human fibroblasts, and its levels decrease in response to growth arrest induced by cell-cell contact. Inhibition of UBPY accumulation by antisense plasmid microinjection prevents fibroblasts from entering S-phase in response to serum stimulation. By increasing or decreasing the cellular abundance of UBPY or by overexpressing a catalytic site mutant, we detect substantial changes in the total pattern of protein ubiquitination, which correlate stringently with cell proliferation. Our results suggest that UBPY plays a role in regulating the overall function of the ubiquitin-proteasome pathway. Affecting the function of a specific UBP in vivo could provide novel tools for controlling mammalian cell proliferation.  相似文献   

5.
Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's beta-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.  相似文献   

6.
UBPY is a ubiquitin-specific protease that can deubiquitinate monoubiquitinated receptor tyrosine kinases, as well as process Lys-48- and Lys-63-linked polyubiquitin to lower denomination forms in vitro. Catalytically inactive UBPY localizes to endosomes, which accumulate ubiquitinated proteins. We have explored the sequelae of short interfering RNA-mediated knockdown of UBPY. Global levels of ubiquitinated protein increase and ubiquitin accumulates on endosomes, although free ubiquitin levels are unchanged. UBPY-depleted cells have more and larger multivesicular endosomal structures that are frequently associated through extended contact areas, characterized by regularly spaced, electron-dense, bridging profiles. Degradation of acutely stimulated receptor tyrosine kinases, epidermal growth factor receptor and Met, is strongly inhibited in UBPY knockdown cells suggesting that UBPY function is essential for growth factor receptor down-regulation. In contrast, stability of the UBPY binding partner STAM is dramatically compromised in UBPY knockdown cells. The cellular functions of UBPY are complex but clearly distinct from those of the Lys-63-ubiquitin-specific protease, AMSH, with which it shares a binding site on the SH3 domain of STAM.  相似文献   

7.
8.
Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends support to the accuracy of the in silico representation of the conformational substates and their interconversions of free ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and dense sampling of conformational space afforded by the μs MD trajectory is essential for the elucidation of the binding mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1-2 nm from ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain.  相似文献   

9.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C-terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.  相似文献   

10.
cDNA encoding a human homolog of yeast ubiquitin 1.   总被引:2,自引:7,他引:2       下载免费PDF全文
  相似文献   

11.
Fast evaluation of internal loops in RNA secondary structure prediction.   总被引:7,自引:0,他引:7  
MOTIVATION: Though not as abundant in known biological processes as proteins, RNA molecules serve as more than mere intermediaries between DNA and proteins. Research in the last 15 years demonstrates that RNA molecules serve in many roles, including catalysis. Furthermore, RNA secondary structure prediction based on free energy rules for stacking and loop formation remains one of the few major breakthroughs in the field of structure prediction, as minimum free energy structures and related quantities can be computed with full mathematical rigor. However, with the current energy parameters, the algorithms used hitherto suffer the disadvantage of either employing heuristics that risk (though highly unlikely) missing the optimal structure or becoming prohibitively time consuming for moderate to large sequences. RESULTS: We present a new method to evaluate internal loops utilizing currently used energy rules. This method reduces the time complexity of this part of the structure prediction from O(n4) to O(n3), thus reducing the overall complexity to O(n3). Even when the size of evaluated internal loops is bounded by k (a commonly used heuristic), the method presented has a competitive edge by reducing the time complexity of internal loop evaluation from O(k2n2) to O(kn2). The method also applies to the calculation of the equilibrium partition function. AVAILABILITY: Source code for an RNA secondary structure prediction program implementing this method is available at ftp://www.ibc.wustl.edu/pub/zuker/zuker .tar.Z  相似文献   

12.
A key feature of successful motor control is the ability to counter unexpected perturbations. This process is complicated in multijoint systems, like the human arm, by the fact that loads applied at one joint will create motion at other joints [1-3]. Here, we test whether our most rapid corrections, i.e., reflexes, address this complexity through an internal model of the limb's mechanical properties. By selectively applying torque perturbations to the subject's shoulder and/or elbow, we revealed a qualitative difference between the arm's short-latency/spinal reflexes and long-latency/cortical reflexes. Short-latency reflexes of shoulder muscles were linked exclusively to shoulder motion, whereas its long-latency reflexes were sensitive to both shoulder and elbow motion, i.e., matching the underlying shoulder torque. In fact, a long-latency reflex could be evoked without even stretching or lengthening the shoulder muscle but by displacing just the elbow joint. Further, the shoulder's long-latency reflexes were appropriately modified across the workspace to account for limb-geometry changes that affect the transformation between joint torque and joint motion. These results provide clear evidence that long-latency reflexes possess an internal model of limb dynamics, a degree of motor intelligence previously reserved for voluntary motor control [3-5]. The use of internal models for both voluntary and reflex control is consistent with substantial overlap in their neural substrates and current notions of intelligent feedback control [6-8].  相似文献   

13.
The ubiquitin hybrid genes Uba80 and Uba52 encode ubiquitin (Ub), which is fused to the ribosomal proteins S27a (RPS27a) and L40 (RPL40), respectively. Here, we show that these genes are preferentially over-expressed during hepatoma cell apoptosis. Experiments using the tet-inducible transgenic system revealed that over-expression of the ubiquitin hybrid genes sensitized the cells to apoptosis. Further analysis suggested that Ub, and not RPS27a or RPL40, was associated with apoptotic cell death. Cleavage-resistant mutation analysis revealed that the N-terminal portion and the last two amino acids (GG) of Ub are critical for cleavage at the junction between the two protein moieties. An apoptogenic stimulus enhances the nuclear targeting and aggregation of Ub in the nucleus, resulting in histone H2A deubiquitylation followed by abnormal ubiquitylation of the nuclear envelope and the lamina. These events accompany the apoptotic nuclear morphology in the late stage of apoptosis. Each fused RP is localized in the nucleoli. These results suggest a role for Ub hybrid proteins in the altered nuclear dynamics of Ub during tumor cell apoptosis induced by apoptogenic stimuli.  相似文献   

14.
15.
The folding (unfolding) pathway of ubiquitin is probed using all-atom molecular dynamics simulations. We dissect the folding pathway using two techniques: first, we probe the folding pathway of ubiquitin by calculating the evolution of structural properties over time and second, we identify the rate determining transition state for folding. The structural properties that we look at are hydrophobic solvent accessible surface area (SASA) and Calpha-root-mean-square deviation (rmsd). These properties on their own tell us relatively little about the folding pathway of ubiquitin; however, when plotted against each other, they become powerful tools for dissecting ubiquitin's folding mechanism. Plots of Calpha-rmsd against SASA serve as a phase space trajectories for the folding of ubiquitin. In this study, these plots show that ubiquitin folds to the native state via the population of an intermediate state. This is shown by an initial hydrophobic collapse phase followed by a second phase of secondary structure arrangement. Analysis of the structure of the intermediate state shows that it is a collapsed species with very little secondary structure. In reconciling these observations with recent experimental data, the transition that we observe in our simulations from the unfolded state (U) to the intermediate state (I) most likely occurs in the dead-time of the stopped flow instrument. The folding pathway of ubiquitin is probed further by identification of the rate-determining transition state for folding. The method used for this is essential dynamics, which utilizes a principal component analysis (PCA) on the atomic fluctuations throughout the simulation. The five transition state structures identified in silico are in good agreement with the experimentally determined transition state. The calculation of phi-values from the structures generated in the simulations is also carried out and it shows a good correlation with the experimentally measured values. An initial analysis of the denatured state shows that it is compact with fluctuating regions of nonnative secondary structure. It is found that the compactness in the denatured state is due to the burial of some hydrophobic residues. We conclude by looking at a correlation between folding kinetics and residual structure in the denatured state. A hierarchical folding mechanism is then proposed for ubiquitin.  相似文献   

16.
17.
According to NMR chemical shift data, the ensemble of ubiquitin is a mixture of “open” and “closed” conformations at rapid equilibrium. Pressure perturbations provide the means to study the transition between the two conformers by imposing an additional constraint on the system's partial molar volume. Here we use nanosecond-timescale molecular dynamics simulations to characterize the network of correlated motions accessible to the conformers at low- and high-pressure conditions. Using the isotropic reorientational eigenmode dynamics formalism to analyze our simulation trajectories, we reproduce NMR relaxation data without fitting any parameters of our model. Comparative analysis of our results suggests that the two conformations behave very differently. The dynamics of the “closed” conformation are almost unaffected by pressure and are dominated by large-amplitude correlated motions of residues 23-34 in the extended α-helix. The “open” conformation under conditions of normal pressure displays increased mobility, focused on the loop residues 17-20, 46-55, and 58-59 at the bottom of the core of the structure, as well as the C-terminal residues 69-76, that directly participate in key protein-protein interactions. For the same conformation, a pressure increase induces a loss of separability between molecular tumbling and internal dynamics, while motions between different backbone sites become uncorrelated.  相似文献   

18.
19.
In the present work, a method based on an epitope-tagged ubiquitin derivative is described that allows for the unambiguous detection of ubiquitin-protein conjugates formed in vivo or in vitro. Expression in the yeast Saccharomyces cerevisiae of ubiquitin that has been tagged at its amino terminus with a peptide epitope results in the formation of tagged ubiquitin-protein conjugates that are detectable by immunoblotting with a monoclonal antibody that recognizes the tag. The expression of tagged ubiquitin has no adverse effect on vegetative growth and, moreover, can suppress the stress-hypersensitive phenotype of yeast lacking the polyubiquitin gene UBI4. We also show that tagged ubiquitin is correctly conjugated in vivo and in vitro to a short-lived test protein and can be covalently extended into the multimeric ubiquitin chain that is normally required for the degradation of this protein. Surprisingly, however, conjugation of tagged ubiquitin inhibits proteolysis. These and related results suggest that the amino-terminal region of ubiquitin is important in protease-substrate recognition and that the multiubiquitin chain is a dynamic transient structure. The potential of tagged ubiquitin for the identification and isolation of ubiquitin-protein conjugates and ubiquitin-related enzymes, and as a tool in mechanistic studies is discussed.  相似文献   

20.
Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号