首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Puerto Rican frog, Eleutherodactylus coqui has invaded Hawaii and reached densities far exceeding those in their native range. One possible explanation for the success of E. coqui in its introduced range is that it lost its co-evolved parasites in the process of the invasion. We compared the parasites of E. coqui in its native versus introduced range. We collected parasite data on 160 individual coqui frogs collected during January-April 2006 from eight populations in Puerto Rico and Hawaii. Puerto Rican coqui frogs had higher species richness of parasites than Hawaiian coqui frogs. Parasite prevalence and intensity were significantly higher in Hawaii, however this was likely a product of the life history of the dominant parasite and its minimal harm to the host. This suggests that the scarcity of parasites may be a factor contributing to the success of Eleutherodactylus coqui in Hawaii.  相似文献   

2.
Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests.  相似文献   

3.
The pathogen Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis, has been linked to amphibian population declines and extinctions worldwide. Bd has been implicated in recent declines of boreal toads, Bufo boreas boreas, in Colorado but populations of boreal toads in western Wyoming have high prevalence of Bd without suffering catastrophic mortality. In a field and laboratory study, we investigated the prevalence of Bd in boreal toads from the Grand Teton ecosystem (GRTE) in Wyoming and tested the pathogenicity of Bd to these toads in several environments. The pathogen was present in breeding adults at all 10 sites sampled, with a mean prevalence of 67%. In an experiment with juvenile toadlets housed individually in wet environments, 106 zoospores of Bd isolated from GRTE caused lethal disease in all Wyoming and Colorado animals within 35 days. Survival time was longer in toadlets from Wyoming than Colorado and in toadlets spending more time in dry sites. In a second trial involving Colorado toadlets exposed to 35% fewer Bd zoospores, infection peaked and subsided over 68 days with no lethal chytridiomycosis in any treatment. However, compared with drier aquaria with dry refuges, Bd infection intensity was 41% higher in more humid aquaria and 81% higher without dry refuges available. Our findings suggest that although widely infected in nature, Wyoming toads may escape chytridiomycosis due to a slight advantage in innate resistance or because their native habitat hinders Bd growth or provides more opportunities to reduce pathogen loads behaviorally than in Colorado.  相似文献   

4.
Chytridiomycosis, an infectious disease of amphibians, is caused by the fungus Batrachochytrium dendrobatidis (Bd) and has been linked to declining amphibian populations worldwide. The susceptibility of amphibians to chytridiomycosis-induced population declines is potentially influenced by many factors, including environmental characteristics, differences among host species and the growth of the pathogen itself. We investigated the effects of elevation and breeding habitat on Bd prevalence and individual infection intensity (zoospore loads) in 3 anuran assemblages of the Atlantic Coastal Forest of Brazil. Bd infection intensity was strongly influenced by elevation and breeding habitat, but we found no evidence of an interaction between those 2 variables in explaining the number of zoospores sampled from individual frogs. In contrast, Bd infection odds were predicted by elevation and by an interaction between elevation and breeding habitat, such that frogs had a higher probability of Bd infection in lotic habitats at low elevations. Our results indicate that Bd persists across a wide variety of habitats and elevations in the Atlantic Coastal Forest. Prevalence and infection intensity of Bd are highest at high elevations where overall environmental conditions for Bd are most favorable. In addition, at low elevations amphibian host habitat choice is also an important determinant of infection. Our study highlights the need to investigate interacting variables of host ecology and the environment simultaneously.  相似文献   

5.
The emerging infectious disease chytridiomycosis, caused by the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in widespread population declines, extirpations, and extinctions of amphibians throughout the world. In the Neotropics, most amphibian declines have occurred in cool mid‐ to high‐elevation sites (> 400 m asl), and it is hypothesized that high temperatures limit the growth of Bd in lowland tropical sites, despite few data available on the distribution of Bd in lowland forests. Here, we report the results of a 12‐mo pathogen surveillance program for three common species of frogs at a warm lowland site in northeastern Costa Rica. We combine standard non‐invasive skin swabbing techniques with a quantitative polymerase chain reaction assay to analyze the infection prevalence and Bd load across a 1‐yr period. Our data indicate an overall Bd infection rate of 6.1 percent, but prevalence varies from < 5 percent in warmer months to a peak of 34.7 percent in the coolest months of the year. Despite very little seasonal variation in temperature (< 4°C), our data indicate strong seasonal variation in the prevalence of Bd, with highest prevalence of infection in months with coolest air temperatures. While it has been suggested that Bd is primarily a riparian fungus, we find no difference in prevalence of infection among our species despite considerable differences in affiliation of these species with water. Our study provides further evidence that infection by Bd is regulated by temperature and shows that warm temperatures in lowland forests may restrict, but not prevent, infection by Bd.  相似文献   

6.
The emerging infectious disease chytridiomycosis has been implicated in declines and disappearances of amphibian populations around the world. However, susceptibility to infection and the extent of pathological effects of infection vary among hosts, and species with life histories that include parental care of direct-developing terrestrial eggs may tend to be less susceptible. We examined samples from a total of 595 individuals of 9 species of direct-developing Australian frogs in the family Microhylidae for the presence of infection by Batrachochytrium dendrobatidis (Bd). Between 1995 and 2004, 336 samples were collected; 102 of these were analysed histologically and 234 were tissues stored in alcohol, which were examined using diagnostic quantitative PCR (qPCR). Swab samples were collected from 259 frogs from 2005 to 2008 and were examined using qPCR. None of the 595 samples showed evidence of infection by Bd. If these data are regarded as a single sample representative of Australian microhylids, the upper 95% binomial confidence limit for the prevalence of infection in frogs of this family is 0.0062 (<1%). Even if only the data from the more powerful diagnostic qPCR tests are used, the upper 95% confidence limit for prevalence is 0.0075 (<1%). Our data suggest that Australian microhylids have a very low prevalence of infection by Bd in nature, and thus are either not susceptible, or are only slightly susceptible, to chytridiomycosis. This could be due solely to, or in combination with, low rates of transmission and to factors that promote resistance to infection, including ecological or behavioural characteristics, innate immune functions such as antimicrobial skin peptides, or antimicrobial symbionts in skin flora.  相似文献   

7.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is likely the cause of numerous recent amphibian population declines worldwide. While the fungus is generally highly pathogenic to amphibians, hosts express a wide range of responses to infection, probably due to variation among hosts and environmental conditions, but possibly also due to variation in Bd. We investigated variation in Bd by exposing standardized host groups to 2 Bd strains in a uniform environment. All exposed frogs became infected, but subsequent lethal and sub-lethal (weight loss) responses differed among groups. These results demonstrate variation in Bd and suggest variation occurs even at small geographical scales, likely explaining some of the variation in host responses. With lower than expected mortality among infected frogs, we continued our study opportunistically to determine whether or not frogs could recover from chytridiomycosis. Using heat, we cleared infection from half of the surviving frogs, leaving the other half infected, then continued to monitor mortality and weight. Mortality ceased among disinfected frogs but continued among infected frogs. Disinfected frogs gained weight significantly more than infected frogs, to the point of becoming indistinguishable from controls, demonstrating that at least some of the effects of sub-lethal chytridiomycosis on hosts can be non-permanent and reversible.  相似文献   

8.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has resulted in the decline or extinction of approximately 200 frog species worldwide. It has been reported throughout much of North America, but its presence on Prince Edward Island (PEI), on the eastern coast of Canada, was unknown. To determine the presence and prevalence of Bd on PEI, skin swabs were collected from 115 frogs from 18 separate sites across the province during the summer of 2009. The swabs were tested through single round end-point PCR for the presence of Bd DNA. Thirty-one frogs were positive, including 25/93 (27%) green frogs Lithobates (Rana) clamitans, 5/20 (25%) northern leopard frogs L. (R.) pipiens, and 1/2 (50%) wood frogs L. sylvaticus (formerly R. sylvatica); 12 of the 18 (67%) sites had at least 1 positive frog. The overall prevalence of Bd infection was estimated at 26.9% (7.2-46.7%, 95% CI). Prevalence amongst green frogs and leopard frogs was similar, but green frogs had a stronger PCR signal when compared to leopard frogs, regardless of age (p < 0.001) and body length (p = 0.476). Amongst green frogs, juveniles were more frequently positive than adults (p = 0.001). Green frogs may be the most reliable species to sample when looking for Bd in eastern North America. The 1 wood frog positive for Bd was found dead from chytridiomycosis; none of the other frogs that were positive for Bd by PCR showed any obvious signs of illness. Further monitoring will be required to determine what effect Bd infection has on amphibian population health on PEI.  相似文献   

9.
Aim Eleutherodactylus coqui (commonly known as the coqui) is a frog species native to Puerto Rico and non‐native in Hawaii. Despite its ecological and economic impacts, its potential range in Hawaii is unknown, making control and management efforts difficult. Here, we predicted the distribution potential of the coqui on the island of Hawaii. Location Puerto Rico and Hawaii. Methods We predicted its potential distribution in Hawaii using five biophysical variables derived from Moderate Resolution Imaging Spectroradiometer (MODIS) as predictors, presence/absence data collected from Puerto Rico and Hawaii and three classification methods – Classification Trees (CT), Random Forests (RF) and Support Vector Machines (SVM). Results Models developed separately using data from the native range and the invaded range predicted potential coqui habitats in Hawaii with high performance. Across the three classification methods, mean area under the ROC curve (AUC) was 0.75 for models trained using the native range data and 0.88 for models trained using the invaded range data. We achieved the highest AUC value of 0.90 using RF for models trained with invaded range data. Main conclusions Our results showed that the potential distribution of coquis on the island of Hawaii is much larger than its current distribution, with RF predicting up to 49% of the island as suitable coqui habitat. Predictions also show that most areas with an elevation between 0 and 2000 m are suitable coqui habitats, whereas the cool and dry high elevation areas beyond 2000 m elevation are unsuitable. Results show that MODIS‐derived biophysical variables are capable of characterizing coqui habitats in Hawaii.  相似文献   

10.
Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yavapaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.  相似文献   

11.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused the decline and extinction of frogs, but the distribution of Bd is not completely known. This information is crucial to implementing appropriate quarantine strategies, preparing for outbreaks of chytridiomycosis due to introduction of Bd, and for directing conservation actions towards affected species. This survey protocol provides a simple and standard method for sampling all frog populations in Australia to maximise the chances of detecting Bd. In order to structure and prioritise the protocol, areas are divided by bioregion and frog species are allocated depending on the water bodies they utilize into 3 groups representing different levels of risk of exposure to Bd. Sixty individuals per population need to be tested to achieve 95% certainty of detecting 1 positive frog, based on the minimum apparent prevalence of > or =5% in infected Australian frog populations and using a quantitative real-time TaqMan PCR test. The appropriate season to sample varies among bioregions and will ideally incorporate temperatures favourable for chytridiomycosis (e.g. maximum air temperatures generally <27 degrees C). Opportunistic collection and testing of sick frogs and tadpoles with abnormal mouth-parts should also be done to increase the probability of detecting Bd. The survey priorities in order are (1) threatened species that may have been exposed to Bd, (2) bioregions surrounding infected bioregions/ecological groups, and (3) species of frogs of unknown infection status in infected bioregions. Within these priority groups, sampling should first target ecological groups and species likely to be exposed to Bd, such as those associated with permanent water, and areas within bioregions that have high risk for Bd as indicated by climatic modelling. This protocol can be adapted for use in other countries and a standard protocol will enable comparison among amphibian populations globally.  相似文献   

12.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   

13.
The emerging amphibian disease chytridiomycosis, which is caused by the fungal pathogen (Batrachochytrium dendrobatidis, Bd), has caused mass mortalities of native amphibian populations globally. There have been no previous studies on the relationships between stress hormones in free-living amphibians and Bd infections. In this study, we measured urinary corticosterone metabolite concentrations and Bd infections within free-living populations of male Stony Creek frog (Litoria wilcoxii) in Queensland, Australia. Prevalence of Bd zoospores from frog skin swabs was quantified using a real-time quantitative PCR technique. A urinary corticosterone enzyme-immunoassay (EIA) was validated using adrenocorticotropic hormone (ACTH) challenge. Urinary corticosterone concentrations of male frogs increased within 1-2 days after ACTH challenge and returned to baseline levels within 3 days post-ACTH injection. None of the frogs showed any rise in urinary corticosterone after saline injections. Individual male frogs showed either low or high baseline corticosterone concentrations. Male frogs identified as positive for Bd infection had significantly higher baseline urinary corticosterone concentrations in comparison to Bd negative male frogs. Urinary corticosterone EIA provides a reliable indication of stress in this frog species and this non-invasive physiological tool can be used to further assess the dynamics of Bd infections and physiological stress responses in other native amphibians.  相似文献   

14.
Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd). Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea) is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.  相似文献   

15.
Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to approximately 10(6) Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15 degrees C) survived less than 48 d, while those in moderately heated aquaria (mean = 18 degrees C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-na?ve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.  相似文献   

16.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).  相似文献   

17.
Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.  相似文献   

18.
The susceptibility of Archey's frog Leiopelma archeyi to Batrachochytrium dendrobatidis (Bd) is unknown, although one large population is thought to have declined sharply due to chytridiomycosis. As primary infection experiments were not permitted in this endangered New Zealand species, 6 wild-caught L. archeyi that naturally cleared infections with Bd while in captivity were exposed again to Bd to assess their immunity. These frogs were from an infected population at Whareorino, which has no known declines. All 6 L. archeyi became reinfected at low intensities, but rapidly self cured, most by 2 wk. Six Litoria ewingii were used as positive controls and developed heavier infections and clinical signs by 3 wk, demonstrating that the zoospore inoculum was virulent. Six negative controls of each species remained uninfected and healthy. Our results show that L. archeyi that have self cured have resistance to chytridiomycosis when exposed. The pattern is consistent with innate or acquired immunity to Bd, and immunological studies are needed to confirm this.  相似文献   

19.
To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly--in nearly total isolation from conspecifics--and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding--when mortality occurs--before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later.  相似文献   

20.
The internally fertilizing primitive frog Ascaphus truei (family Ascaphidae) from the Pacific Northwest is the only frog with an intromittent organ. The more advanced neobatrachian frog Eleutherodactylus coqui (family Leptodactylidae) from Puerto Rico has secondarily acquired internal fertilization but mates by cloacal apposition. Nonetheless, both frogs have introsperm with an elongated head containing highly condensed chromatin. Characterization of sperm nuclear basic proteins (SNBPs) in E. coqui by acid-urea polyacrylamide gel electrophoresis indicates that, as in A. truei, testes from a single animal contain several protamines. Amino acid analysis indicates a composition for the most rapidly moving protamine of each species as follows: in E. coqui, ARG (35.6 mol %) + LYS (3.8 mol %) + HIS (7.6 mol %) = 47 mol % total basic residues and in A. truei, ARG (42.1 mol %) + LYS (11.1 mol %) = 53.2 mol % total basic residues. Transmission electron microscopy shows that E. coqui introsperm, like those in A. truei, are elongate with highly condensed chromatin. However, E. coqui introsperm lacks an axial perforatorium that extends into an endonuclear canal. These morphological features are plesiomorphic (primitive) and shared by A. truei with urodeles and basal amniotes (Jamieson et al. (1993) Herpetologica 49:52-65). In E. coqui introsperm, the nucleoprotein complex has a cross-sectional axis of 420 + 20 angstroms and shows a knobby chromatin structural organization in TEM. The presence of arginine-enriched protamines in both a basal anuran like the ascaphid A. truei and a more advanced neobatrachian like the leptodactylid E. coqui supports the hypothesis that internal fertilization acts as a constraint on the range of SNBP diversity in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号