首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(8):966-974
Abstract

To evaluate the psychosocial effect on lifespan and cognitive function, this study investigated the effect of confrontational housing on mice because conflict among male mice is a psychosocial stress. In addition, it investigated the anti-stress effect of theanine (γ-glutamylethylamide), an amino acid in tea. Mice were housed under confrontation. That is, two male mice were separately housed in the same cage with a partition for establishing the territorial imperative in each mouse. Then, the partition was removed and mice were co-housed confrontationally (confront-housing) using a model mouse of accelerated-senescence (SAMP10) that exhibited cerebral atrophy and cognitive dysfunction with ageing. It was found that mice began to die earlier under confront-housing than group-housed control mice. Additionally, it was found that cerebral atrophy, learning impairment and behavioural depression were higher in mice under the stressed condition of confront-housing than age-matched mice under group-housing. Furthermore, the level of oxidative damage in cerebral DNA was higher in mice housed confrontationally than group-housed control mice. On the other hand, the consumption of purified theanine (20 μg/ml, 5–6 mg/kg) suppressed the shortened lifespan, cerebral atrophy, learning impairment, behavioural depression and oxidative damage in cerebral DNA. These results suggest that psychosocial stress accelerates age-related alterations such as oxidative damage, lifespan, cognitive dysfunction and behavioural depression. The intake of theanine might be a potential candidate for suppression of disadvantage under psychosocial stress.  相似文献   

2.
Age-related loss of muscle mass and function, sarcopenia, has a major impact on the quality of life in the elderly. Among the proposed causes of sarcopenia are mitochondrial dysfunction and accumulated oxidative damage during aging. Dietary restriction (DR), a robust dietary intervention that extends lifespan and modulates age-related pathology in a variety of species, has been shown to protect from sarcopenia in rodents. Although the mechanism(s) by which DR modulates aging are still not defined, one potential mechanism is through modulation of oxidative stress and mitochondrial dysfunction. To directly test the protective effect of DR against oxidative stress-induced muscle atrophy in vivo, we subjected mice lacking a key antioxidant enzyme, CuZnSOD (Sod1) to DR (60% of ad libitum fed diet). We have previously shown that the Sod1(-/-) mice exhibit an acceleration of sarcopenia associated with high oxidative stress, mitochondrial dysfunction, and severe neuromuscular innervation defects. Despite the dramatic atrophy phenotype in the Sod1(-/-) mice, DR led to a reversal or attenuation of reduced muscle function, loss of innervation, and muscle atrophy in these mice. DR improves mitochondrial function as evidenced by enhanced Ca(2+) regulation and reduction of mitochondrial reactive oxygen species (ROS). Furthermore, we show upregulation of SIRT3 and MnSOD in DR animals, consistent with reduced mitochondrial oxidative stress and reduced oxidative damage in muscle tissue measured as F(2) -isoprostanes. Collectively, our results demonstrate that DR is a powerful mediator of mitochondrial function, mitochondrial ROS production, and oxidative damage, providing a solid protection against oxidative stress-induced neuromuscular defects and muscle atrophy in vivo even under conditions of high oxidative stress.  相似文献   

3.
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.  相似文献   

4.
《Free radical research》2013,47(9):731-739
Abstract

Oxidative stress is considered to be related to the onset and/or progression of Alzheimer's disease (AD), but there is insufficient evidence of its role(s). In this study, we evaluated the relationships between the brain redox state and cognitive function using a triple transgenic mouse model of AD (3 × Tg-AD mouse). One group of 3 × Tg-AD mice started to receive an α-tocopherol-supplemented diet at 2 months of age and another group of 3 × Tg-AD mice was fed a normal diet. The levels of α-tocopherol, reduced glutathione, oxidized glutathione, and lipid peroxidation were decreased in the cerebral cortex and hippocampus at 4 months of age in the 3 × Tg-AD mice fed a normal diet. These reductions were abrogated by the supplementation of α-tocopherol in the diet. During Morris water maze testing, the 3 × Tg-AD mice did not exhibit cognitive impairment at 4 months of age, but started to show cognitive dysfunction at 6 months of age, and α-tocopherol supplementation suppressed this dysfunction. Magnetic resonance imaging (MRI) using 3-hydroxymethyl-proxyl as a probe showed decreases in the signal intensity in the brains of 3 × Tg-AD mice at 4 months of age, and this reduction was clearly attenuated by α-tocopherol supplementation. Taken together, these findings suggest that oxidative stress can be associated with the cognitive impairment in 3 × Tg-AD mice. Furthermore, MRI might be a powerful tool to noninvasively evaluate the increases in reactive radicals, especially those occurring during the early stages of AD.  相似文献   

5.
In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy.  相似文献   

6.
High levels of phenylalanine (Phe) are the biochemical hallmark of phenylketonuria (PKU), a neurometabolic disorder clinically characterized by severe mental retardation and other brain abnormalities, including cortical atrophy and microcephaly. Considering that the pathomechanisms leading to brain damage and particularly the marked cognitive impairment in this disease are poorly understood, in the present study we investigated the in vitro effect of Phe, at similar concentrations as to those found in brain of PKU patients, on important parameters of oxidative stress in the hippocampus and cerebral cortex of developing rats. We found that Phe induced in vitro lipid peroxidation (increase of TBA-RS values) and protein oxidative damage (sulfhydryl oxidation) in both cerebral structures. Furthermore, these effects were probably mediated by reactive oxygen species, since the lipid oxidative damage was totally prevented by the free radical scavengers α-tocopherol and melatonin, but not by L-NAME, a potent inhibitor of nitric oxide synthase. Accordingly, Phe did not induce nitric oxide synthesis, but significantly decreased the levels of reduced glutathione (GSH), the major brain antioxidant defense, in hippocampus and cerebral cortex supernatants. Phe also reduced the thiol groups of a commercial GSH solution in a cell-free medium. We also found that the major metabolites of Phe catabolism, phenylpyruvate, phenyllactate and phenylacetate also increased TBA-RS levels in cerebral cortex, but to a lesser degree. The data indicate that Phe elicits oxidative stress in the hippocampus, a structure mainly involved with learning/memory, and also in the cerebral cortex, which is severely damaged in PKU patients. It is therefore presumed that this pathomechanism may be involved at least in part in the severe cognitive deficit and in the characteristic cortical atrophy associated with dysmyelination and leukodystrophy observed in this disorder.  相似文献   

7.
A model animal showing spontaneous onset is a useful tool for investigating the mechanism of disease. Here, I would like to introduce two aging model animals expected to be useful for neuroscience research: the senescence-accelerated mouse (SAM) and the klotho mouse. The SAM was developed as a mouse showing a senescence-related phenotype such as a short lifespan or rapid advancement of senescence. In particular, SAMP8 and SAMP10 show age-related impairment of learning and memory. SAMP8 has spontaneous spongy degeneration in the brain stem and spinal cord with aging, and immunohistochemical studies reveal excess protein expression of amyloid precursor protein and amyloid β in the brain, indicating that SAMP8 is a model for Alzheimer’s disease. SAMP10 also shows age-related impairment of learning and memory, but it does not seem to correspond to Alzheimer’s disease because senile plaques primarily composed of amyloid β or neurofibrillary tangles primarily composed of phosphorylated tau were not observed. However, severe atrophy in the frontal cortex, entorhinal cortex, amygdala, and nucleus accumbens can be seen in this strain in an age-dependent manner, indicating that SAMP10 is a model for normal aging. The klotho mouse shows a phenotype, regulated by only one gene named α-klotho, similar to human progeria. The α-klotho gene is mainly expressed in the kidney and brain, and oxidative stress is involved in the deterioration of cognitive function of the klotho mouse. These animal models are potentially useful for neuroscience research now and in the near future.  相似文献   

8.
Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro‐oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late‐generation TERC (telomerase RNA component)‐deficient mice having short telomeres and reduced lifespan. Double mutant (TERC?/? p66SHC?/?) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC‐deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC‐mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late‐generation mice seems to be independent of any link between p66SHC‐mediated oxidative stress and telomere attrition.  相似文献   

9.
Moment‐to‐moment adjustment of cerebral blood flow (CBF) via neurovascular coupling has an essential role in maintenance of healthy cognitive function. In advanced age, increased oxidative stress and cerebromicrovascular endothelial dysfunction impair neurovascular coupling, likely contributing to age‐related decline of higher cortical functions. There is increasing evidence showing that mitochondrial oxidative stress plays a critical role in a range of age‐related cellular impairments, but its role in neurovascular uncoupling remains unexplored. This study was designed to test the hypothesis that attenuation of mitochondrial oxidative stress may exert beneficial effects on neurovascular coupling responses in aging. To test this hypothesis, 24‐month‐old C57BL/6 mice were treated with a cell‐permeable, mitochondria‐targeted antioxidant peptide (SS‐31; 10 mg kg?1 day?1, i.p.) or vehicle for 2 weeks. Neurovascular coupling was assessed by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation. We found that neurovascular coupling responses were significantly impaired in aged mice. Treatment with SS–31 significantly improved neurovascular coupling responses by increasing NO‐mediated cerebromicrovascular dilation, which was associated with significantly improved spatial working memory, motor skill learning, and gait coordination. These findings are paralleled by the protective effects of SS–31 on mitochondrial production of reactive oxygen species and mitochondrial respiration in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, mitochondrial oxidative stress contributes to age‐related cerebromicrovascular dysfunction, exacerbating cognitive decline. We propose that mitochondria‐targeted antioxidants may be considered for pharmacological microvascular protection for the prevention/treatment of age‐related vascular cognitive impairment (VCI).  相似文献   

10.
Neurological impairments are frequently detected in children surviving cerebral malaria (CM), the most severe neurological complication of infection with Plasmodium falciparum. The pathophysiology and therapy of long lasting cognitive deficits in malaria patients after treatment of the parasitic disease is a critical area of investigation. In the present study we used several models of experimental malaria with differential features to investigate persistent cognitive damage after rescue treatment. Infection of C57BL/6 and Swiss (SW) mice with Plasmodium berghei ANKA (PbA) or a lethal strain of Plasmodium yoelii XL (PyXL), respectively, resulted in documented CM and sustained persistent cognitive damage detected by a battery of behavioral tests after cure of the acute parasitic disease with chloroquine therapy. Strikingly, cognitive impairment was still present 30 days after the initial infection. In contrast, BALB/c mice infected with PbA, C57BL6 infected with Plasmodium chabaudi chabaudi and SW infected with non lethal Plasmodium yoelii NXL (PyNXL) did not develop signs of CM, were cured of the acute parasitic infection by chloroquine, and showed no persistent cognitive impairment. Reactive oxygen species have been reported to mediate neurological injury in CM. Increased production of malondialdehyde (MDA) and conjugated dienes was detected in the brains of PbA-infected C57BL/6 mice with CM, indicating high oxidative stress. Treatment of PbA-infected C57BL/6 mice with additive antioxidants together with chloroquine at the first signs of CM prevented the development of persistent cognitive damage. These studies provide new insights into the natural history of cognitive dysfunction after rescue therapy for CM that may have clinical relevance, and may also be relevant to cerebral sequelae of sepsis and other disorders.  相似文献   

11.
Cardiomyopathy is the main clinical form of Chagas disease (CD); however, cerebral manifestations, such as meningoencephalitis, ischemic stroke and cognitive impairment, can also occur. The aim of the present study was to investigate functional microvascular alterations and oxidative stress in the brain of mice in acute CD. Acute CD was induced in Swiss Webster mice (SWM) with the Y strain of Trypanosoma cruzi (T. cruzi). Cerebral functional capillary density (the number of spontaneously perfused capillaries), leukocyte rolling and adhesion and the microvascular endothelial-dependent response were analyzed over a period of fifteen days using intravital video-microscopy. We also evaluated cerebral oxidative stress with the thiobarbituric acid reactive species TBARS method. Compared with the non-infected group, acute CD significantly induced cerebral functional microvascular alterations, including (i) functional capillary rarefaction, (ii) increased leukocyte rolling and adhesion, (iii) the formation of microvascular platelet-leukocyte aggregates, and (iv) alteration of the endothelial response to acetylcholine. Moreover, cerebral oxidative stress increased in infected animals. We concluded that acute CD in mice induced cerebral microvasculopathy, characterized by a reduced incidence of perfused capillaries, a high number of microvascular platelet-leukocyte aggregates, a marked increase in leukocyte-endothelium interactions and brain arteriolar endothelial dysfunction associated with oxidative stress. These results suggest the involvement of cerebral microcirculation alterations in the neurological manifestations of CD.  相似文献   

12.
Lycopene attenuates diabetes-associated cognitive decline in rats   总被引:2,自引:0,他引:2  
Kuhad A  Sethi R  Chopra K 《Life sciences》2008,83(3-4):128-134
Diabetes-induced learning and memory impairment, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involve direct neuronal damage caused by intracellular glucose. The present study was designed to investigate the effect of lycopene, a potent anti-oxidant and anti-inflammatory molecule, on cognitive functions, oxidative stress and inflammation in streptozotocin (STZ)-induced diabetic rats. Cognitive functions were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 1.8 fold in the cerebral cortex of diabetic rats. There was about 2 fold and 2.2 fold rise in thiobarbituric acid-reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Non-protein thiol levels and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Total nitric oxide levels in cerebral cortex and hippocampus was increased by 2.4 fold and 2 fold respectively. Serum tumor necrosis factor-alpha, an inflammatory marker, was found to increase by 8 fold in diabetic rats. Chronic treatment with lycopene (1, 2 and 4 mg/kg; p.o.) significantly and dose dependently attenuated cognitive deficit, increased acetylcholinesterase activity, oxidative-nitrosative stress and inflammation in diabetic rats. The results emphasize the involvement of oxidative-nitrosative stress and peripheral inflammation in the development of cognitive impairment in diabetic animals and point towards the therapeutic potential of lycopene in diabetes-induced learning and memory impairment.  相似文献   

13.
Responses to oxidative stress contribute to damage caused by chronic cerebral hypoperfusion, which is characteristic of certain neurodegenerative diseases. We used a rat model of chronic cerebral hypoperfusion to determine whether green tea polyphenols, which are potent antioxidants and free radical scavengers, can reduce vascular cognitive impairment and to investigate their underlying mechanisms of action. Different doses of green tea polyphenols were administered orally to model rats from 4 to 8 weeks after experimentally induced cerebral hypoperfusion, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability in the cortex and hippocampus were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine, respectively. Rats that received green tea polyphenols 400 mg/kg per day had better spatial learning and memory than saline-treated rats. Green tea polyphenols 400 mg/kg per day were found to scavenge oxygen free radicals, enhance antioxidant potential, decrease lipid peroxide production and reduce oxidative DNA damage. However, green tea polyphenols 100 mg/kg per day had no significant effects, particularly in the cortex. This study suggests that green tea polyphenols 400 mg/kg per day improve spatial cognitive abilities following chronic cerebral hypoperfusion and that these effects may be related to the antioxidant effects of these compounds.  相似文献   

14.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

15.
Deng  Mingyang  Liu  Jianyang  He  Jialin  Lan  Ziwei  Hu  Zhiping  Yuan  Huan  Xiao  Han 《Neurochemical research》2021,46(11):2969-2978

Intracerebral hemorrhage (ICH) causes long term neurological abnormality or death. Oxidative stress is closely involved in ICH mediated brain damage. Steroid receptor cofactor 3 (SRC-3), a p160 family member, is widely expressed in the brain and regulates transactivation of Nrf2, a key component of antioxidant response. Our study aims to test if SRC-3 is implicated in ICH mediated brain injury. We first examined levels of SRC-3 and oxidative stress in the brain of mice following ICH and analyzed their correlation. Then ICH was induced in wild type (WT) and SRC-3 knock out mice and how SRC-3 deletion affected ICH induced brain damage, oxidative stress and behavioral outcome was assessed. We found that SRC-3 mRNA and protein expression levels were reduced gradually after ICH induction in WT mice along with an increase in oxidative stress levels. Correlation analysis revealed that SRC-3 mRNA levels negatively correlated with oxidative stress. Deletion of SRC-3 further increased ICH induced brain edema, neurological deficit score and oxidative stress and exacerbated ICH induced behavioral abnormality including motor dysfunction and cognitive impairment. Our findings suggest that SRC-3 is involved in ICH induced brain injury, probably through modulation of oxidative stress.

  相似文献   

16.
Indian Hypericum perforatum (IHp) was investigated on a 14-day mild, unpredictable and inescapable foot shock stress (FSS) induced perturbations in behaviour (depression), suppressed male sexual behaviour and cognitive dysfunction in albino rats. Gastric ulceration, and adrenal gland and spleen weights, were also used as the stress indices. Panax ginseng (PG) was used as the standard adaptogenic agent for comparison. FSS induced marked gastric ulceration, significant increase in adrenal gland weight with concomitant decrease in spleen weight. Chronic stress also suppressed male sexual behaviour, induced behavioural depression (Porsolt's swim despair test and learned helplessness test) and cognitive dysfunction (attenuated retention of learning in active and passive avoidance tests). All these FSS induced perturbations were attenuated dose dependently by IHp (100 and 200 mg/kg, po) and PG (100 mg/kg, po). The results indicate that IHp has significant anti-stress activity, qualitatively comparable to PG, against a variety of behavioural and physiological perturbations induced by chronic stress, which has been proposed to be a better indicator of clinical stress than acute stress, and may indicate adaptogenic activity.  相似文献   

17.
Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.  相似文献   

18.
Oxidative stress and aging: beyond correlation   总被引:5,自引:1,他引:4  
The oxidative stress theory of aging has become increasingly accepted as playing a role in the aging process, based primarily on a substantial accumulation of circumstantial evidence. In recent years, the hypothesis that mitochondrially generated reactive oxygen species play a role in organismal aging has been directly tested in both invertebrate and mammalian model systems. Initial results imply that oxidative damage, specifically the level of superoxide, does play a role in limiting the lifespans of invertebrates such as Drosophila melanogaster and Caenorhabditis elegans. In mammalian model systems, the effect of oxidative stress on lifespan is less clear, but there is evidence that antioxidant treatment protects against age-related dysfunction, including cognitive decline.  相似文献   

19.
Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.  相似文献   

20.
Oxidative stress and aberrant signaling in aging and cognitive decline   总被引:7,自引:0,他引:7  
Dröge W  Schipper HM 《Aging cell》2007,6(3):361-370
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号