首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

2.
The role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides has been investigated by a structural and functional characterization of the D177N mutant enzyme. Its three-dimensional structure has been determined by X-ray cryocrystallography in the presence of NAD(+) and in the presence of glucose 6-phosphate plus NADPH. The structure of a glucose 6-phosphate complex of a mutant (Q365C) with normal enzyme activity has also been determined and substrate binding compared. To understand the effect of Asp-177 on the ionization properties of the catalytic base His-240, the pH dependence of kinetic parameters has been determined for the D177N mutant and compared to that of the wild-type enzyme. The structures give details of glucose 6-phosphate binding and show that replacement of the Asp-177 of the catalytic dyad with asparagine does not affect the overall structure of glucose 6-phosphate dehydrogenase. Additionally, the evidence suggests that the productive tautomer of His-240 in the D177N mutant enzyme is stabilized by a hydrogen bond with Asn-177; hence, the mutation does not affect tautomer stabilization. We conclude, therefore, that the absence of a negatively charged aspartate at 177 accounts for the decrease in catalytic activity at pH 7.8. Structural analysis suggests that the pH dependence of the kinetic parameters of D177N glucose 6-phosphate dehydrogenase results from an ionized water molecule replacing the missing negative charge of the mutated Asp-177 at high pH. Glucose 6-phosphate binding orders and orients His-178 in the D177N-glucose 6-phosphate-NADPH ternary complex and appears to be necessary to form this water-binding site.  相似文献   

3.
The fluorescence of TNP-nucleotides bound to sarcoplasmic reticulum ATPase is enhanced upon formation of phosphorylated enzyme intermediate either with ATP in the presence of Ca2+ or, to a greater extent, with Pi in the absence of Ca2+. Binding of the TNP-nucleotides does not occur if the ATPase is labeled at the active site with fluorescein isothiocyanate. Addition of ADP to the TNP-nucleotide X enzyme complex phosphorylated with Pi causes dissociation of TNP-nucleotide and a proportional reduction in fluorescence. These and other kinetic observations indicate that the TNP-nucleotide exchanges with ADP following enzyme phosphorylation with ATP or occupies the ADP portion of the catalytic site following enzyme phosphorylation with Pi. This interaction with the phosphorylated site results in fluorescence enhancement of the TNP-nucleotide. Comparison of the TNP-nucleotide fluorescence features in different solvents with that of the TNP-nucleotide bound to sarcoplasmic reticulum ATPase indicates that, following phosphorylation, the binding domain excludes solvent molecules and confers restricted mobility to the TNP-nucleotide. Solvent exclusion and substrate immobilization accompany, to a greater extent, phosphorylation of the active site with Pi in the absence of Ca2+. TNP-nucleotides bound to the catalytic sites were also found to be acceptors of resonance energy transfer from enzyme tryptophan in the extramembranous domain of the ATPase which also contains the catalytic site.  相似文献   

4.
When heat-activated F1-ATPase from chloroplasts was repeatedly exposed to Mg2+ and 2-azido-ATP, followed by separation from medium nucleotides and photolysis, a total of two sites per enzyme, both catalytic and noncatalytic, were labeled. In a coupled assay with pyruvate kinase about half the activity was lost when one site per enzyme was modified. However, increased modification resulted in no further loss of activity. In contrast, methanol-sulfite activation of the enzyme showed a loss of most of the catalytic capacity when one site per enzyme was modified. Predominant labeling of either one catalytic or one noncatalytic site caused a loss of most of the activity in either assay. An indication that the enzyme modified at one site retained some catalytic activity was verified by measurement of the [18O]Pi species formed when [gamma-18O]ATP was hydrolyzed by partially derivatized enzyme. With either catalytic or noncatalytic site modification, the distributions of [18O]Pi species formed showed that the modified enzyme had different catalytic characteristics. An interpretation is that with modification by azido nucleotides at either catalytic or noncatalytic sites, capacity for rapid catalysis is largely lost but the remaining sites retain weak modified catalytic properties.  相似文献   

5.
The binding of substrates and modifiers to glucosamine synthetase   总被引:2,自引:0,他引:2  
1. The binding of substrates and effectors to glucosamine synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was studied by using the ligand to alter the denaturation rate of the enzyme. The free enzyme bound fructose 6-phosphate, glucose 6-phosphate and UDP-N-acetylglucosamine, but not glutamine, AMP or UTP. Glucose 6-phosphate and AMP increased the binding of UDP-N-acetylglucosamine whereas UTP decreased the interaction between the enzyme and the feedback inhibitor. UDP-N-acetylglucosamine induced a glutamine-binding site on the enzyme. 2. Selective thermal or chemical denaturation revealed that the UDP-N-acetylglucosamine-binding site was not located at the catalytic site. The UTP site could not be distinguished from that for the nucleotide sugar. The AMP- and glucose 6-phosphate-binding sites were distinct from the catalytic and feedback-inhibitor-binding sites. 3. The specificity of the glutamine-binding site was investigated by using a series of potential analogues. 4. A model is proposed for the action of the effectors and the mechanism of the reaction discussed in kinetic and chemical terms.  相似文献   

6.
We have synthesized a new class of ATP photo-affinity analogs, 2',3'-O-(2,4,6-trinitrophenyl)-8-azido (TNP-8N3)-ATP, -ADP, and -AMP, and their radiolabeled derivatives, and characterized their interaction with sarcoplasmic reticulum vesicles. The nucleotides bind with high affinity (Kd = 0.04-0.4 microM) to the catalytic site of the Ca2+-ATPase. TNP-8N3-ATP and TNP-8N3-ADP, at low concentrations (less than 10 microM), accelerate ATPase activity 1.5- and 1.4-fold, respectively, indicating that they bind to a regulatory site. In the same concentration range, they all undergo a large increase in fluorescence ("superfluorescence") during enzyme turnover in the presence of ATP and Ca2+, or on phosphorylation from Pi in a Ca2+-depleted medium. Irradiation at alkaline pH results in specific covalent incorporation of the nucleotide at the catalytic site on the A1 tryptic subfragment. The efficiency of catalytic site labeling is greatest (up to 80% of available sites/irradiation period) in the presence of ATP, Ca2+, and Mg2+, conditions in which the probe binds only to the regulatory and superfluorescent sites. The covalently attached nucleotide exhibits fluorescence enhancement on enzyme turnover in the presence of acetyl phosphate plus Ca2+ or on phosphorylation from Pi in a Ca2+-depleted medium, but not in the presence of ATP plus Ca2+. The results suggest that the catalytic, regulatory, and superfluorescent nucleotide sites are at the same locus and that the binding domain includes portions of the A1 subfragment. The high efficiency with which the site is photolabeled during turnover is ascribed to water exclusion and possibly cleft closure in E2-P.  相似文献   

7.
The phosphorylation of sarcoplasmic reticulum ATPase with Pi in the absence of Ca2+ was studied by equilibrium and kinetic experimentation. The combination of these measurements was then subjected to analysis without assumptions on the stoichiometry of the reactive sites. The analysis indicates that the species undergoing covalent interaction is the tertiary complex E X Pi X Mg formed by independent interaction of the two ligands with the enzyme. The binding constant of Pi or Mg2+ to either free or partially associated enzyme is approximately equal to 10(2) M-1, and no significant synergistic effect is produced by one ligand on the binding of the other; the equilibrium constant (Keq) for the covalent reaction E X Pi X Mg E-P X Mg is approximately equal to 16, with kphosph = 53 s-1, and khyd = 3-4 s-1 (25 degrees C, pH 6.0, no K+). The phosphorylation reaction of sarcoplasmic reticulum ATPase with Pi is highly H+ dependent. Such a pH dependence involves the affinity of enzyme for different ionization states of Pi, as well as protonation of two protein residues per enzyme unit in order to obtain optimal phosphorylation. The experimental data can then be fitted satisfactorily assuming pK values of 5.7 and 8.5 for the two residues in the nonphosphorylated enzyme (changing to 7.7 for one of the two residues, following phosphorylation) and values of 50.0 and 0.58 for the equilibrium constants of the H2(E X HPO4) in equilibrium with H(E-PO3) + H2O and H(E X HPO4) in equilibrium with E-PO3 + H2O reactions, respectively. In addition to the interdependence of H+ and phosphorylation sites, an interdependence of Ca2+ and phosphorylation sites is revealed by total inhibition of the Pi reaction when two high affinity calcium sites per enzyme unit are occupied by calcium. Conversely, occupancy of the phosphate site by vanadate (a stable transition state analogue of phosphate) inhibits high affinity calcium binding. The known binding competition between the two cations and their opposite effects on the phosphorylation reaction suggest that interdependence of phosphorylation site, H+ sites, and Ca2+ sites is a basic mechanistic feature of enzyme catalysis and cation transport.  相似文献   

8.
气相扩散共晶生长法培养出P.versicolor龙虾肌ATP-D-甘油醛-3-磷酸脱氢酶(ATP-GAPDH)的晶体。用同步辐射X光源-磷光储屏-Weissenberg照相机系统收集了一套2.0分辨率的衍射数据。用同晶差值傅立叶法解析了其结构。精化后的结构模型最终R因子为0.197,与标准键长、键角的均方根偏差为0.016°和3.20°。PvATP-GAPDH结构总体上和Pvapo-GAPDH相似。ATP分子的占有率较低,并表现出一定程度的无序性,提示ATP与酶蛋白结合的稳定性较低,表明NAD+的尼克酰胺核苷部分与蛋白质分子的作用在辅酶与蛋白质的稳定结合中起关键作用。ATP-GAPDH中每个亚基只有一个磷酸结合位点(Pi)。认为无机磷酸结合位点Pi的形成不依赖于NAD+,而底物磷酸结合位点PS的形成则依赖于NAD+的存在。  相似文献   

9.
In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi <--> F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an increase in water activity. The effect of solvent is fully reversible. In comparison to other enzymes, F1 seems unique in that solvent controls the equilibrium that exists within an enzyme population. This results from the effect of solvent on the partition of Pi between the catalytic site and the medium, and the large energetic barrier that prevents release of ATP from the catalytic site. In the presence of dimethylsulfoxide and Pi, ATP is continuously hydrolyzed and synthesized with formation and uptake of Pi from the medium. This process is essentially an exchange reaction analogous to the phosphate-ATP exchange reaction that is catalyzed by the ATP synthase in coupled energy transducing membranes.  相似文献   

10.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP.  相似文献   

11.
To delineate better the reaction sequence of the (Na+ + K+)-ATPase and illuminate properties of the active site, kinetic data were fitted to specific quantitative models. For the (Na+ + K+)-ATPase reaction, double-reciprocal plots of velocity against ATP (in the millimolar range), with a series of fixed KCl concentrations, are nearly parallel, in accord with the ping pong kinetics of ATP binding at the low-affinity sites only after Pi release. However, contrary to requirements of usual formulations, Pi is not a competitor toward ATP. A new steady-state kinetic model accommodates these data quantitatively, requiring that under usual assay conditions most of the enzyme activity follows a sequence in which ATP adds after Pi release, but also requiring a minor alternative pathway with ATP adding after K+ binds but before Pi release. The fit to the data also reveals that Pi binds nearly as rapidly to E2 X K X ATP as to E2 X K, whereas ATP binds quite slowly to E2 X P X K: the site resembles a cul-de-sac with distal ATP and proximal Pi sites. For the K+-nitrophenyl phosphatase reaction also catalyzed by this enzyme, the apparent affinities for both substrate and Pi (as inhibitor) decrease with higher KCl concentrations, and both Pi and TNP-ATP appear to be competitive inhibitors toward substrate with 10 mM KCl but noncompetitive inhibitors with 1 mM KCl. These data are accommodated quantitatively by a steady-state model allowing cyclic hydrolytic activity without obligatory release of K+, and with exclusive binding of substrate vs. either Pi or TNP-ATP. The greater sensitivity of the phosphatase reaction to both Pi and arsenate is attributable to the weaker binding by the occluded-K+ enzyme form occurring in the (Na+ + K+)-ATPase reaction sequence. The steady-state models are consistent with cyclical interconversion of high- and low-affinity substrate sites accompanying E1/E2 transitions, with distortion to low-affinity sites altering not only affinity and route of access but also separating the adenine- and phosphate-binding regions, the latter serving in the E2 conformation as the active site for the phosphatase reaction.  相似文献   

12.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

13.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

14.
A preparation of purified erythrocyte membrane ATPase whose activation by Ca2+ is or is not dependent on calmodulin depending on the enzyme dilution was used in the low dilution state for these studies. In appropriate conditions, the purified ATPase in the absence of calmodulin exhibited a Ca2+ concentration dependence identical to that of the native enzyme in the erythrocyte membrane ghost in the presence of calmodulin. Accordingly, an apparent Kd approximately equal to 1 X 10(-7) M was derived for cooperative calcium binding to the activating and transport sites of the nonphosphorylated enzyme. The kinetics of enzyme phosphorylation in the transient state following addition of ATP to enzyme activated with calcium were then resolved by rapid kinetic methods, demonstrating directly that phosphoenzyme formation precedes Pi production, consistent with the phosphoenzyme role as an intermediate in the catalytic cycle. Titration of a low affinity site (Kd approximately equal to 2 X 10(-3) M) with calcium produced inhibition of phosphoenzyme cleavage and favored reversal of the catalytic cycle, indicating that calcium dissociation from the transport sites precedes hydrolytic cleavage of the phosphoenzyme. The two different calcium dissociation constants of the nonphosphorylated and phosphorylated enzyme demonstrate that a phosphorylation-induced reduction of calcium affinity is the basic coupling mechanism of catalysis and active transport, with an energy expenditure of approximately 6 kcal/mol of calcium in standard conditions. From the kinetic point of view, a rate-limiting step is identified with the slow dissociation of calcium from the phosphoenzyme; another relatively slow step following hydrolytic cleavage and preceding recycling of the enzyme is suggested by the occurrence of a presteady state phosphoenzyme overshoot.  相似文献   

15.
The hydrophobic nature of the active site of two energy-transducing ATPases was explored by comparing interactions between Pi and each of three hydrophobic drugs in the absence and presence of organic solvents. The drugs tested were the Fe . bathophenanthroline complex and the anticalmodulin drugs, calmidazolium and trifluoperazine. All inhibit the Pi in equilibrium with ATP exchange reaction catalyzed by submitochondrial particles and the ATPase activity of both submitochondrial particles and soluble F1 ATPase. The inhibition by the three drugs is reversed by either raising the Pi concentration or by adding organic solvent (dimethylsulfoxide, ethyleneglycol or methanol) to the medium. The inhibition of the Pi in equilibrium with ATP exchange by trifluoperazine becomes more pronounced when the electrochemical proton gradient formed across the membrane of the submitochondrial particles is decreased by the addition to the medium of the proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone. The ATPase activity and the Ca2+ uptake by sarcoplasmic reticulum vesicles are inhibited by the Fe . bathophenanthroline complex, calmidazolium and trifluoperazine. Phosphorylation of the ATPases by Pi, synthesis of ATP from ADP and Pi and the fast efflux of Ca2+ observed during reversal of the Ca2+ pump are inhibited by the three drugs. The inhibition is reversed by raising the concentration of Pi or dimethylsulfoxide. The three drugs tested appear to compete with Pi for a common binding site on the Ca2+-ATPase. The data presented are interpreted according to the proposal that the catalytic site of an enzyme involved in energy transduction undergoes a hydrophobic-hydrophilic transition during the catalytic cycle.  相似文献   

16.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   

17.
Submitochondrial particles from beef heart, washed with dilute solutions of KCl so as to activate the latent, membrane-bound ATPase, F1, may be used to study single site catalysis by the enzyme. [gamma-32P]ATP, incubated with a molar excess of catalytic sites, a condition which favors binding of substrate in only a single catalytic site on the enzyme, is hydrolyzed via a four-step reaction mechanism. The mechanism includes binding in a high affinity catalytic site, Ka = 10(12)M-1, a hydrolytic step for which the equilibrium constant is near unity, and two product release steps in which Pi dissociates from catalytic sites about 10 times more rapidly than ADP. Catalysis by the membrane-bound ATPase also is characterized by a 10(6)-fold acceleration in the rate of net hydrolysis of [gamma-32P]ATP, bound in the high affinity catalytic site, that occurs when substrate is made available to additional catalytic sites on the enzyme. These aspects of the reaction mechanism of the ATPase of submitochondrial particles closely parallel the reaction mechanism determined for solubilized, homogeneous F1 (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100). The finding that removal of the enzyme from the membrane does not significantly alter the properties of single site catalysis lends support to models of ATP synthesis in oxidative phosphorylation, catalyzed by membrane-bound F1, that have been based on the study of the soluble enzyme.  相似文献   

18.
Selective stabilization of either the N- or C-terminal half (by ligands binding to these regions) of rat brain hexokinase against partial denaturation with guanidine hydrochloride and subsequent digestion with trypsin has provided a means for isolating these regions, referred to as N fragment and C fragment, respectively, in quantities adequate for characterization. The N fragment (mol wt 52 kDa) is devoid of catalytic activity. In contrast, the C fragment (mol wt 51 kDa) has a specific activity of about 110 U/mg, nearly twice that (60 U/mg) of the intact 100-kDa enzyme, indicating that the kappa cat is virtually identical for both species. Unlike the parent enzyme, the C fragment is quite sensitive to inhibition by Pi (competitive vs ATP, noncompetitive vs Glc); sulfate and arsenate, but not acetate, inhibit with effectiveness similar to that seen with Pi. The Glc-6-P analog, 1,5-anhydroglucitol-6-P, also inhibits the C fragment (competitive vs ATP, uncompetitive vs Glc). Both N and C fragments bind to Affi-Gel Blue, an affinity matrix bearing a covalently attached analog of ATP, and are eluted by hexose 6-phosphates competitive with nucleotide binding to the parent enzyme. Based on the ability of various hexoses and hexose 6-phosphates (and analogs) to protect against guanidine-induced denaturation and subsequent proteolysis it is concluded that both fragments contain discrete sites for hexoses and hexose 6-phosphates, with specificities resembling those seen for the binding of these ligands to the parent enzyme. Synergistic interactions between the hexose and hexose-6-P binding sites, previously seen with the parent enzyme, are also observed with the C fragment but not the N fragment. The existence of binding sites for hexoses and hexose 6-phosphates on both halves conflicts with previous binding studies demonstrating a single hexose binding site and a single hexose 6-phosphate binding site on the intact 100-kDa enzyme, leading to the conclusion that one of each pair of sites must be latent in the intact enzyme, becoming manifest only in the isolated discrete halves. Several investigators have previously suggested that the 100-kDa mammalian hexokinases evolved by duplication and fusion of a gene encoding an ancestral 50-kDa Glc-6-P-insensitive hexokinase, similar to the present-day yeast enzyme, with sensitivity to Glc-6-P resulting from evolution of a duplicated catalytic site into a regulatory site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

20.
The effects of orthophosphate, nucleotide analogues, ADP, and covalent phosphorylation on the tryptic fragmentation patterns of the E1 and E2 forms of scallop Ca-ATPase were examined. Sites preferentially cleaved by trypsin in the E1 form of the Ca-ATPase were detected in the nucleotide (N) and phosphorylation (P) domains, as well as the actuator (A) domain. These sites were occluded in the E2 (Ca(2+)-free) form of the enzyme, consistent with mutual protection of the A, N, and P domains through their association into a clustered structure. Similar protection of cytoplasmic Ca(2+)-dependent tryptic cleavage sites was observed when the catalytic binding site for substrate on the E1 form of scallop Ca-ATPase was occupied by Pi, AMP-PNP, AMP-PCP, or ADP despite the presence of saturating levels of Ca2+. These results suggest that occupation of the catalytic site on E1 can induce condensation of the cytoplasmic domains to yield a unique structural intermediate that may be related to the form of the enzyme in which the active site is prepared for phosphoryl transfer. The effect of Pi on the E2 form of the scallop Ca-ATPase was also investigated, when it was found that formation of E2-P led to extreme resistance toward secondary cleavage by trypsin and stabilization of enzymatic activity for long periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号