共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics 总被引:1,自引:0,他引:1
R. Sagardoy F. Morales A.-F. López-Millán A. Abadía & J. Abadía 《Plant biology (Stuttgart, Germany)》2009,11(3):339-350
The effects of high Zn concentration were investigated in sugar beet ( Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 μ m ) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 μ m Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 μ m Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a / b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 μ m Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230–260 μg·g−1 dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation. 相似文献
2.
Seedlings of sugar beet ( Beta vulgaris L. cv Monohill) were cultivated for 4 weeks in nutrient solution containing different concentrations of CdCl2 (0 to 10 μ M ). The effects of Cd on appearance and function of stomata and leaf cuticle were investigated by water loss measurements and microscopy. The leaf transpiration rate increased with increasing Cd concentrations while the sum total of stomatal aperture area per unit leaf area decreased. Already at low Cd levels. an increase of defective and undeveloped stomata was found in Cd treated plants. These stomata are closed or have small apertures and probably lack a functional closing mechanism. The number of intact stomata per unit leaf area was lower in leaves of Cd treated plants than in controls, and Cd induced closure of intact stomata. The total number of stomata per leaf area slightly increases with increasing Cd concentration. as does the percentage of small stomata. Furthermore. specific leaf area increased, while the density of leaf structure was decreased by Cd. From this observation we conclude that the increase in transpiration rate caused by Cd is primarily due to effects on the permeability of the leaf cuticle to water. 相似文献
3.
Mesophyll protoplasts from two of five sugar beet lines tested were regenerated into plants. Mesophyll protoplasts of all lines showed high plating efficiencies up to 4.0% developed hard compact callus, and two of the lines also developed white, soft and friable callus consisting of starch grain-containing cells. Whereas the compact callus never regenerated into plants, the white friable ones frequently developed globular structures, which became green in the light and formed adventitious shoots after cytokinin (BAP or thidiazuron) treatment. Genetic analysis by PCR-fingerprinting and flow cytometry showed uniformity and unchanged ploidy levels in 15 independently regenerated plantlets in line NF. but altered ploidy level (from diploid to triploid) in a regenerated plantlet of clone VRB. 相似文献
4.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP
benzylaminopurine
- IBA
indole-3-butyric acid
- GA3
gibberellic acid
- MS
Murashige and Skoog medium
- NAA
naphthaleneacetic acid
Author for correspondence 相似文献
5.
C.-L. Zhang D.-C. Xu X.-C. Jiang Y. Zhou J. Cui C.-X. Zhang D.-F. Chen M.R. Fowler M.C. Elliott N.W. Scott A.M. Dewar & A. Slater 《The Annals of applied biology》2008,152(2):143-156
Sugar beet (Beta vulgaris) is an important arable crop, traditionally used for sugar extraction, but more recently, for biofuel production. A wide range of pests, including beet cyst nematode (Heterodera schachtii), root‐knot nematodes (Meloidogyne spp.), green peach aphids (Myzus persicae) and beet root maggot (Tetanops myopaeformis), infest the roots or leaves of sugar beet, which leads to yield loss directly or through transmission of beet pathogens such as viruses. Conventional pest control approaches based on chemical application have led to high economic costs. Development of pest‐resistant sugar beet varieties could play an important role towards sustainable crop production while minimising environmental impact. Intensive Beta germplasm screening has been fruitful, and genetic lines resistant to nematodes, aphids and root maggot have been identified and integrated into sugar beet breeding programmes. A small number of genes responding to pest attack have been cloned from sugar beet and wild Beta species. This trend will continue towards a detailed understanding of the molecular mechanism of insect–host plant interactions and host resistance. Molecular biotechnological techniques have shown promise in developing transgenic pest resistance varieties at an accelerated speed with high accuracy. The use of transgenic technology is discussed with regard to biodiversity and food safety. 相似文献
6.
Pea ( Pisum sativum L. cv. Fenomen) and sugar beet ( Beta vulgaris L. cv. Monohill) were cultivated in nutrient media without or with 10 μM CdCl2 . Leaves of the same size and stage of development, detached or still attached to the intact plants, were submerged into redistilled water containing 1 to 250 μM CdCl2 . The uptake experiments were run for 1 to 8 h at pH 3.6 and 5.1. Cuticular transpiration rate, density of leaf and density of stomata were also measured. Percentage of open stomata was studied at different pH.
Foliar uptake of Cd into the leaf is evident since Cd is transported from the exposed part of the pea leaves, through the petioles and into the stipules, and since the Cd concentration of the leaves increases with time and external Cd concentration. The foliar uptake depends on the permeability of the cuticular membrane, which is increased by a high intrinsic Cd level, which in turn enhances the foliar uptake of Cd in sugar beet. Higher cuticular permeability in pea than in sugar beet is shown by a 2.5 times higher cuticular transpiration rate and a 4 times lower density of leaf for pea, which causes a 7 times higher foliar uptake in pea than in sugar beet. Low pH decreases the net uptake of Cd, probably by an exchange reaction in the cutin and pectin of the cuticular membrane. Stomata are not directly involved in the Cd uptake, and the differences in the sum total of stomatal aperture area per unit leaf area is not related to differences in foliar uptake of Cd. Percentage of open stomata, calculated as average of both sides of the leaves, was not affected by changes in pH: but especially at high pH. proportionally more stomata were open on the adaxial than on the abaxial side. 相似文献
Foliar uptake of Cd into the leaf is evident since Cd is transported from the exposed part of the pea leaves, through the petioles and into the stipules, and since the Cd concentration of the leaves increases with time and external Cd concentration. The foliar uptake depends on the permeability of the cuticular membrane, which is increased by a high intrinsic Cd level, which in turn enhances the foliar uptake of Cd in sugar beet. Higher cuticular permeability in pea than in sugar beet is shown by a 2.5 times higher cuticular transpiration rate and a 4 times lower density of leaf for pea, which causes a 7 times higher foliar uptake in pea than in sugar beet. Low pH decreases the net uptake of Cd, probably by an exchange reaction in the cutin and pectin of the cuticular membrane. Stomata are not directly involved in the Cd uptake, and the differences in the sum total of stomatal aperture area per unit leaf area is not related to differences in foliar uptake of Cd. Percentage of open stomata, calculated as average of both sides of the leaves, was not affected by changes in pH: but especially at high pH. proportionally more stomata were open on the adaxial than on the abaxial side. 相似文献
7.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2 -dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+ -cultivated plants showed an increased rate of dark respiration. 相似文献
8.
Abstract. Three parameters influencing the capacity for carbon accumulation, i.e. photosynthesis, respiration, and leaf extension growth, were studied in Beta vulgaris L. (sugar beet) cultured in nutrient solution containing 0.5 to 500 mol m−3 NaCl. Leaf extension growth was the parameter most sensitive to salinity: the initial rate of leaf extension and final leaf length each declined linearly with increase in external NaCl concentration. Photosynthetic O2 evolution of thin leaf slices did not decline until salinity levels reached 350 to 500 mol m−3 NaCl, while respiratory O2 consumption was not affected by salinity throughout the range. The results suggest that the influence of salinity on the capacity for carbon accumulation in B. vulgaris occurs primarily through reduction in the area of photosynthetic surface. 相似文献
9.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL
max/TPL
max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season. 相似文献
10.
Yuji Kishima Tetsuo Mikami Takeo Harada Kazuo Shinozaki Masahiro Sugiura Toshiro Kinoshita 《Plant molecular biology》1986,7(3):201-205
Summary A restriction endonuclease fragment map of sugar beet chloroplast DNA (ctDNA) has been constructed with the enzymes SmaI, PstI and PvuII. The ctDNA was found to be contained in a circular molecule of 148.5 kbp. In common with many other higher plant ctDNAs, sugar beet ctDNA consists of two inverted repeat sequences of about 20.5 kbp separated by two single-copy regions of different sizes (about 23.2 and 84.3 kbp). Southern hybridization analyses indicated that the genes for rRNAs (23S+16S) and the large subunit of ribulose 1,5-bisphosphate carboxylase were located in the inverted repeats and the large single-copy regions, respectively. 相似文献
11.
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT‐PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed. 相似文献
12.
13.
An augmented biparental (ABIP) mating design was used to investigate the quantitative variation, particularly the dominance variation, for morphological and chemical characters in sugar beet. Diploid O-type plants were both crossed and selfed and the progeny were grown in a single-plant randomised field trial. A comparison of the two kinds of family provided tests for both dominance variation and directional dominance effects. Estimates of the narrow heritability were also obtained for each character. Germination problems reduced the size of the final analysis but evidence was obtained of dominance variation and positive directional dominance effects for leaf length, root weight and potassium concentration and, to a lesser extent, sugar concentration. Genetic control of sodium and alpha-amino nitrogen concentrations appeared to be mostly additive. Hybrid varieties of sugar beet should exploit these directional dominance effects and the more closely varieties approach true F, hybrids the more they will capitalise on these advantages. It is possible that other factors such as epistasis, contamination, competition and seed effects may cause us to under- or overestimate the importance of dominance. 相似文献
14.
DNA methylation of retrotransposons,DNA transposons and genes in sugar beet (Beta vulgaris L.) 下载免费PDF全文
Falk Zakrzewski Martin Schmidt Mieke Van Lijsebettens Thomas Schmidt 《The Plant journal : for cell and molecular biology》2017,90(6):1156-1175
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. 相似文献
15.
Hamid Reza Rimaz Shahrokh Zand-Parsa Mansour Taghvaei Ali Akbar Kamgar-Haghighi 《Physiology and Molecular Biology of Plants》2020,26(12):2329
Soil temperature, texture, water content and sowing depth are effective factors on the estimation of emergence time. This research aimed to test the Beta model for its adequacy in predicting the time of emergence for sugar beet. The Beta growth model as a phenological model have been used for evaluating the time of seedling emergences under both controlled environments in laboratory and field conditions. An experiment was conducted both in the laboratory with five soil textures, three sowing depths, five soil water contents and ten constant soil temperatures, under field conditions on five sowing dates (20 February, 28 March, 19 April, 10 May, and 31 May) and three sowing depths. The results demonstrated that the Beta model can predict the time of emergence. Based on the root mean square error (RMSE), the time of emergence estimated by the Beta model was in high agreement with the time of emergence measured in the laboratory. Estimation accuracy was reduced slightly by the Beta model under field conditions. The accuracy of the Beta model was influenced by the sowing date under field conditions. So, on the first and second sowing dates (with low air temperature), the estimation of time of emergence by the model was lower and on the fourth and the fifth sowing date (with warmer air temperature), was more than the duration measured. Estimation accuracy was increased by the Beta model under field conditions using soil temperature. In conclusion, the Beta model can predict the time to emergence of sugar beet seedlings in different levels of soil texture and soil water content under field conditions, and with that, the proper planting date for sugar beet seeds to overcome weeds in different soil water content can be predicted. 相似文献
16.
Laboratory and field experiments were carried out to quantify the effects of the size and roughness of aggregates placed in the seedling path of sugar beet, in order to help in decision making for soil tillage and sowing operations. Graded aggregates (10, 15, 20, 30, 40, 50, 60 and 70 mm longest axis) were either laid on the soil surface or included in the soil over the seeds. The percent emergence decreased exponentially with aggregate size over 10 mm when the aggregates were included in the seedbed. The result was the same with aggregates laid on the soil surface, but for aggregates over 30 mm (mass>10 g). Aggregates on the soil surface could be lifted by the seedlings until their weight exceeded the seedling emergence force. Larger aggregates or aggregates in the soil layer could not be moved. Seedlings which did not emerge remained blocked in small cavities in the aggregate surface. No seedlings were blocked under smooth aggregates or glass beads. The experimental results fits with a model giving the probability to meet a hole according the distance covered and the diameter and density of holes. The results obtained under controlled conditions were similar to those obtained in field experiments for a wide range of aggregate sizes. These results will be incorporated into a computerised seedbed generator to simulate the effects of seedbed structure on seedling emergence. 相似文献
17.
18.
Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars 总被引:1,自引:0,他引:1
Salinization is one of the most important factors affecting agricultural land in the world. Salinization occurs naturally
in arid and semiarid regions where evaporation is higher than rainfall. Sugar beet yield declines with an increase in salinity,
but the sensitivity to salts varies with salt composition in water and sugar beet growth stage. The aim of this study was
to determine the effect of water salinity levels and salt composition on germination and seedling root length of four sugar
beet cultivars (PP22, IC2, PP36, and 7233). The experiments were undertaken with irrigation water with two salt compositions
(NaCl alone and mixture of MgSO4 + NaCl + Na2SO4 + CaCl2) in three replicates. Thirteen salinity levels with electrical conductivity (EC) of the irrigation water ranging from 0 to
30 dS/m were applied to each cultivar in both experiments. Seed germination percentage and seedling root length growth were
determined in 13 days. Statistical analysis revealed that germination and root length were significantly affected by salt
composition, cultivars and salinity levels. Regardless of salt composition, seed germination and seedling root length were
significantly affected by the irrigation water with EC up to 8 dS/m and 4 dS/m, respectively. Except for cultivar PP22, the
adverse effect of salinity of the irrigation water on seed germination and seedling root length was higher for NaCl alone
than for the salt mixture, which refers to lower salt stress in field conditions with natural salt composition.
Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September
2007. 相似文献
19.
通过对旱地甜菜叶片生长特性及摘除不同叶组对块根产量,含糖量,显微结构的影响研究,结果表明:甜菜第10-20片叶的叶龄最长,积温最高,是甜菜的主要功能叶;甜菜从第20片叶期起进入块根,糖份增长期,从第55叶期起进入糖份积累期;摘除不同叶组的叶片对甜菜块根产量,含糖量及显微结构均有不同程度降低作用,摘除前期叶组对甜菜块根产量,产糖量,根径减幅较大,摘除后期叶组对块根含糖量,维管束环数,维管束环密度减幅较大;摘除第1-30片叶对甜菜影响最大。 相似文献
20.
Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops. 相似文献