首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Escherichia coli strain 15--28 is a mutant which during exponential growth contains large amounts of a '47S' ribonucleoprotein precursor to 50S ribosomes. The '47S particles' are more sensitive to ribonuclease than are 50S ribosomes. The 23 S RNA of 47S particles may be slightly undermethylated, but cannot be distinguished from the 23S RNA of 50S ribosomes by sedimentation or electrophoresis. Isolated particles have 10--15% less protein than do 50S ribosomes; proteins L16, L28 and L33 are absent. Comparison with precursor particles studied by other workers in wild-type strains of E. coli suggests that the assembly of 50S ribosomes in strain 15--28 is atypical.  相似文献   

2.
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (tau, delta, and delta') were identified. The dnaX gene produces only the full-length product, tau, and therefore differs from Escherichia coli dnaX that produces two proteins (gamma and tau). Nonetheless, the A. aeolicus proteins form a taudeltadelta' complex. The dnaN gene encoding the beta clamp was identified, and the taudeltadelta' complex is active in loading beta onto DNA. A. aeolicus contains one dnaE homologue, encoding the alpha subunit of DNA polymerase III. Like E. coli, A. aeolicus alpha and tau interact, although the interaction is not as tight as the alpha-tau contact in E. coli. In addition, the A. aeolicus homologue to dnaQ, encoding the epsilon proofreading 3'-5'-exonuclease, interacts with alpha but does not form a stable alpha.epsilon complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 degrees C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.  相似文献   

3.
A hybrid protein consisting of the Escherichia coli lipoprotein signal sequence attached to the mature sequence of the B subunit of heat-labile enterotoxin (Lipo-EtxB) was expressed in yeast and E. coli. Analyses of cell lysates from Saccharomyces cerevisiae and E. coli expressing the protein revealed that both organisms were able to assemble Lipo-EtxB into oligomers that were (i) stable in the presence of sodium dodecyl sulphate, (ii) resistant to proteinase K degradation, and (iii) able to bind to GM1-ganglioside receptors. Each of these properties are characteristic of the wild-type B subunit pentamer produced in E. coli. Assembly of Lipo-EtxB was found to be unaffected in a sec18 mutant of S. cerevisiae, which possesses a temperature-sensitive defect in protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus, but was found not to assemble in a sec53 mutant, which causes the misfolding of proteins targeted to the ER. A kar2-1 mutation with a defect in the yeast homologue of BiP caused an 18-fold reduction in Lipo-EtxB assembly at the non-permissive temperature in S. cerevisiae. However, introduction of the wild-type KAR2 gene on a plasmid into the kar2-1 mutant completely suppressed the inhibition of Lipo-EtxB assembly. This provides the first evidence that KAR2 facilitates the assembly of an oligomeric protein in yeast and thus implicates KAR2 as a 'molecular chaperone'. The possible mechanisms of enterotoxoid assembly in E. coli and S. cerevisiae are discussed.  相似文献   

4.
The assembly of the 50S subunit from Escherichia coli ribosomes is initiated by two ribosomal proteins, L24 and L3. A mutant lacking the assembly-initiator protein L24 shows distinct phenotypic features (temperature sensitivity, growth rate reduced by a factor of 6 at permissive temperatures below 34 degrees C, underproduction of 50S subunits), which could be traced back to assembly effects caused by lack of L24 [Herold, M., Nowotny, V., Dabbs, E. R., & Nierhaus, K. H. (1986) Mol. Gen. Genet. 203, 281-287]. As expected, only one assembly protein was effective during in vitro assembly at nonpermissive temperatures, whereas surprisingly the restoration of active particle formation at permissive temperatures was paralleled by the reappearance of two initiator proteins. Here we analyze the initiation of assembly at permissive temperatures in the absence of L24. We demonstrate in a series of reconstitution experiments with purified proteins that the two initiator proteins are L20 and L3. Thus, L20 can replace L24 for the initiation of assembly at permissive temperatures.  相似文献   

5.
Ribosomes from Gram-negative bacteria such as Escherichia coli exhibit non-specific translation of bacterial mRNAs. That is, they are able to translate mRNAs from a variety of sources in a manner independent of the "strength" of the Shine-Dalgarno region, in contrast to ribosomes from many Gram-positive bacteria, such as Bacillus subtilis, which show specific translation in only being able to translate other Gram-positive mRNA, or mRNAs that have "strong" Shine-Dalgarno regions. There is an evolutionary correlation between the translational specificity and the absence of a protein analogous to E. coli ribosomal protein S1. The specificity observed with B. subtilis ribosomes is a function of their 30 S subunit which lacks S1; translation of Gram-negative mRNA can occur with heterologous ribosomes containing the 30 S subunit of E. coli ribosomes and the 50 S subunit of B. subtilis ribosomes. However, the addition of E. coli S1 alone to B. subtilis ribosome does not overcome their characteristic inability to translate mRNA from Gram-negative organisms. By contrast, the removal of S1 from E. coli ribosomes results in translational behavior similar to that shown by B. subtilis ribosomes in that the S1-depleted E. coli ribosomes can translate mRNA from Gram-positive sources in the absence of added S1, although addition of S1 stimulates further translation of such mRNAs by the E. coli ribosomes.  相似文献   

6.
The ribosomal protein L11 in bacteria is posttranslationally trimethylated at multiple amino acid positions by the L11 methyltransferase PrmA, the product of the prmA gene. The role of L11 methylation in ribosome function or assembly has yet to be determined, although the deletion of Escherichia coli prmA has no apparent phenotype. We have constructed a mutant of the extreme thermophile Thermus thermophilus in which the prmA gene has been disrupted with the htk gene encoding a heat-stable kanamycin adenyltransferase. This mutant shows no growth defects, indicating that T. thermophilus PrmA, like its E. coli homolog, is dispensable. Ribosomes prepared from this mutant contain unmethylated L11, as determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and are effective substrates for in vitro methylation by cloned and purified T. thermophilus PrmA. MALDI-TOF MS also revealed that T. thermophilus L11 contains a total of 12 methyl groups, in contrast to the 9 methyl groups found in E. coli L11. Finally, we found that, as with the E. coli methyltransferase, the ribosomal protein L11 dissociated from ribosomes is a more efficient substrate for in vitro methylation by PrmA than intact 70S ribosomes, suggesting that methylation in vivo occurs on free L11 prior to its incorporation into ribosomes.  相似文献   

7.
The gene for the ribosomal L12 protein from the archaebacterium Methanococcus vannielii was cloned into the expression vector pKK223-3. The protein was overexpressed and remained stable in Escherichia coli XL1 cells. Purification yielded a protein with the same amino acid composition and sequence as in Methanococcus but it was acetylated at the N terminus as in the case with the homologous protein of E. coli. The in vivo incorporation of the overexpressed protein into the E. coli ribosomes was not observed. The overexpressed M. vannielii protein MvaL12e was incorporated into halobacterial ribosomes, thereby displacing the corresponding halobacterial L12 protein. Intact 70 S ribosomes were reconstituted from halobacterial 50 S subunits carrying the MvaL12e protein. These ribosomes were as active as native halobacterial ribosomes in a poly(U) assay. On the other hand, our attempts to incorporate L12 proteins from Bacillus stearothermophilus and E. coli into halobacterial ribosomes were not successful. These results support the conclusion which is based on primary sequence and predicted secondary structure comparisons that there exist two distinct L12 protein families, namely the eubacterial L12 protein family and the eukaryotic/archaebacterial L12 protein family.  相似文献   

8.
In the crystal structure of the 30S ribosomal subunit from Thermus thermophilus, cysteine 24 of ribosomal protein S14 (TthS14) occupies the first position in a CXXC-X12-CXXC motif that coordinates a zinc ion. The structural and functional importance of cysteine 24, which is widely conserved from bacteria to humans, was studied by its replacement with serine and by incorporating the resulting mutant into Escherichia coli ribosomes. The capability of such modified ribosomes in binding tRNA at the P and A-sites was equal to that obtained with ribosomes incorporating wild-type TthS14. In fact, both chimeric ribosomal species exhibited 20% lower tRNA affinity compared with native E. coli ribosomes. In addition, replacement of the native E. coli S14 by wild-type, and particularly by mutant TthS14, resulted in reduced capability of the 30S subunit for association with 50S subunits. Nevertheless, ribosomes from transformed cells sedimented normally and had a full complement of proteins. Unexpectedly, the peptidyl transferase activity in the chimeric ribosomes bearing mutant TthS14 was much lower than that measured in ribosomes incorporating wild-type TthS14. The catalytic center of the ribosome is located within the 50S subunit and, therefore, it is unlikely to be directly affected by changes in the structure of S14. More probably, the perturbing effects of S14 mutation on the catalytic center seem to be propagated by adjacent intersubunit bridges or the P-site tRNA molecule, resulting in weak donor-substrate reactivity. This hypothesis was verified by molecular dynamics simulation analysis.  相似文献   

9.
10.
The ribosomal 5S RNA gene from E. coli was altered by oligonucleotide-directed mutagenesis at positions A66 and U103. The mutant genes were cloned into an expression vector and selectively transcribed in an UV-sensitive E. coli strain using a modified maxicell system. The mutant 5S RNA genes were found to be transcribed and processed normally. The 5S RNA molecules were assembled into 50S ribosomal subunits. Under in vitro conditions the stability of the mutant 70S ribosomes seemed, however, to be reduced, since they dissociated into their subunits more easily than those of the wild type. The isolated mutated 5S RNAs with base changes in the ribosomal protein binding sites for L18 and L25, together with a point mutant at G41 (G to C), constructed earlier, were tested for their capacity to bind the 5S RNA binding proteins L5, L18 and L25. The following effects were observed: The base change A66 to C within the L18 binding site did not affect the binding of the ribosomal protein L18 but enhanced the stability of the L25-5S RNA complex considerably. The base changes U103 to G and G41 to C slightly reduced the binding of L5 and L25 whereas the binding of L18 to the mutant 5S RNAs was not altered. In addition 70S ribosomes with the single point mutations in their 5S RNAs were tested in their tRNA binding capacity. Mutants containing a C41 in their 5S RNA showed a reduction in the poly(U)-dependent Phe-tRNA binding, whereas the mutations to C66 and G 103 lead to completely inactive ribosomes in the same assay. Based on previous results a spatial model of the 5S RNA molecule is presented which is consistent with the findings reported in this paper.  相似文献   

11.
Chloroplast ribosomes of higher plants are of the prokaryotic ribosome motif but, unlike in bacteria, their ribosomal protein (r-protein) genes are distributed between the organelle and the nucleus. In order to isolate some of the nuclear-encoded r-protein genes, we have raised antibodies to several spinach chloroplast r-proteins and constructed spinach cDNA expression libraries in lambdagt11. Screening the libraries with one of the antisera yielded three cDNA clones for r-protein L13, an early 50 S subunit assembly protein essential for RI50 formation. The cDNA clone encodes, beginning with a Met codon in the consensus plant initiator context, a polypeptide of 250 amino acid residues. The NH2-terminal 60 residues bear the characteristic features of a chloroplast transit peptide. The putative mature L13 protein, which has common immunoepitopes with Escherichia coli L13, is 34% longer than the E. coli homologue. It has 56% sequence identity with E. coli L13 in the homologous region, but no identity to any known protein in the extra stretch. There are two neighboring ATG codons in the 5' region and two putative plant polyadenylation signals in the 3'-untranslated region of the cDNA. Their possible effect to increase translational efficiency is discussed, and the importance of encoding a RI50 protein in the nuclear genome for possible nuclear control of chloroplast protein synthesis is noted.  相似文献   

12.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

13.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

14.
Chloroplast ribosomal protein L13 is encoded in the plant nucleus and is considerably larger than its eubacterial homologue by having NH2- and COOH-terminal extensions with no homology to any known sequences (Phua et al., J Biol. Chem. 264, 1968-1971, 1989). We made two gene constructs of L13 cDNA using the polymerase chain reaction (PCR) and expressed them in Escherichia coli. Analysis of the ribosomes and polysomes from these cells, using an antiserum specific to chloroplast L13, shows that the expressed proteins are incorporated, in the presence of the homologous E. coli L13, into functional ribosomes which participate in protein synthesis (i.e. polysomes). Evidence is obtained that the large NH2-terminal extension probably lies on the surface of these 'mosaic ribosomes.' This first report of the assembly into E. coli ribosomes of nuclear-coded chloroplast ribosomal protein with terminal extensions thus suggest an extraordinary conservation in the function of eubacterial type ribosomal proteins, despite the many changes in protein structure during their evolution inside a eukaryotic system.  相似文献   

15.
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.  相似文献   

16.
17.
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.  相似文献   

18.
Day, L. E. (Chas. Pfizer & Co., Inc., Groton, Conn.). Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system. J. Bacteriol. 92:197-203. 1966.-When tetracycline, an inhibitor of cell-free protein synthesis, was preincubated with each component of the Escherichia coli cell-free system, i.e., ribosomes, soluble ribonucleic acid (sRNA), polyuridylic acid (poly U), and S-100 (supernatant enzymes), only the ribosomal-bound antibiotic was inhibitory to the cell-free assay. Experiments designed to further localize the site of inhibition to either the 50S (Svedberg) or the 30S ribosomal subunit were not conclusive. Tritiated tetracycline (7-H(3)-tetracycline) was bound to isolated 50S ribosomes, and these were recombined with 30S subunits to form 70S ribosomes. When these ribosomes were dissociated and the subunits reisolated, the antibiotic was found with both the 50S and the 30S particles. The same results were observed when the tetracycline was initially bound to the 30S subunit.  相似文献   

19.
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.  相似文献   

20.
The circularly permuted GTPase YlqF is essential for cell viability and is broadly conserved from Gram-positive bacteria to eukaryotes. We previously reported that YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. Here, we demonstrate that an N-terminal deletion mutant of YlqF (YlqFDeltaN10) inhibits cell growth even in the presence of wild-type YlqF. In contrast to the wild-type protein, the GTPase activity of this mutant was not stimulated by the 50 S subunit and did not dissociate from the premature 50 S subunit. Thus, YlqFDeltaN10 acts as a competitive inhibitor of wild-type YlqF. Premature 50 S subunit lacking ribosomal protein L27 and with a reduced amount of L16 accumulated in YlqFDeltaN10-overexpressing cells and in YlqF-depleted cells, suggesting that YlqFDeltaN10 binds to the premature 50 S subunit. Moreover, premature 50 S subunit from both YlqFDeltaN10-overexpressing and YlqF-depleted cells more strongly enhanced the GTPase activity of YlqF than the mature 50 S subunit of the 70 S ribosome. Collectively, our results indicate that YlqF is targeted to the premature 50 S subunit lacking ribosomal proteins L16 and L27 to assemble functional 50 S subunit through a GTPase activity-dependent conformational change of 23 S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号