首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Escherichia coli and other Gram-negative bacteria produce outer membrane vesicles during normal growth. Vesicles may contribute to bacterial pathogenicity by serving as vehicles for toxins to encounter host cells. Enterotoxigenic E. coli (ETEC) vesicles were isolated from culture supernatants and purified on velocity gradients, thereby removing any soluble proteins and contaminants from the crude preparation. Vesicle protein profiles were similar but not identical to outer membranes and differed between strains. Most vesicle proteins were resistant to dissociation, suggesting they were integral or internal. Thin layer chromatography revealed that major outer membrane lipid components are present in vesicles. Cytoplasmic membranes and cytosol were absent in vesicles; however, alkaline phosphatase and AcrA, periplasmic residents, were localized to vesicles. In addition, physiologically active heat-labile enterotoxin (LT) was associated with ETEC vesicles. LT activity correlated directly with the gradient peak of vesicles, suggesting specific association, but could be removed from vesicles under dissociating conditions. Further analysis revealed that LT is enriched in vesicles and is located both inside and on the exterior of vesicles. The distinct protein composition of ETEC vesicles and their ability to carry toxin may contribute to the pathogenicity of ETEC strains.  相似文献   

3.
4.
In contrast to cholera toxin (CT), which is secreted solubly by Vibrio cholerae across the outer membrane, heat-labile enterotoxin (LT) is retained on the surface of enterotoxigenic Escherichia coli (ETEC) via an interaction with lipopolysaccharide (LPS). We examined the nature of the association between LT and LPS. Soluble LT binds to the surface of LPS deep-rough biosynthesis mutants but not to lipid A, indicating that only the Kdo (3-deoxy-d-manno-octulosonic acid) core is required for binding. Although capable of binding truncated LPS and Kdo, LT has a higher affinity for longer, more complete LPS species. A putative LPS binding pocket is proposed based on the crystal structure of the toxin. The ability to bind LPS and remain associated with the bacterial surface is not unique to LT, as CT also binds to E. coli LPS. However, neither LT nor CT is capable of binding to the surface of Vibrio. The core structures of Vibrio and E. coli LPS differ in that Vibrio contains a phosphorylated single Kdo-lipid A, and E. coli LPS contains unphosphorylated Kdo2-lipid A. We determined that the phosphate group on the Kdo core of Vibrio LPS prevents CT from binding, resulting in the secretion of soluble toxin. Because LT binds E. coli LPS, it remains associated with the extracellular bacterial surface and is released in association with outer membrane vesicles. We propose that difference in the extracellular fates of LT and CT contribute to the differences in disease caused by ETEC and Vibrio cholerae.  相似文献   

5.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles.  相似文献   

6.
A DNA fragment that can functionally substitute for cfaD, the positive regulatory gene involved in expression of CFA/I fimbriae, has recently been cloned from an Escherichia coli strain of serotype O167:H5 that produces CS5 fimbriae. Nucleotide sequence determination showed that the fragment contained a gene, csvR (Coli Surface Virulence factor Regulator) homologous to the cfaD gene, which encoded for a protein of 301 amino acid residues. The csvR gene was found to be located between two different insertion sequences. Comparison of the amino acid sequence of the CsvR and CfaD proteins showed that CsvR is 34 amino acid residues longer at the C-terminus and, in the sequence, it also contains an insertion of two amino acid residues. The similarity between CfaD and Rns, the positive regulator of CS1 and CS2 expression, is much higher (97%) than between CsvR and CfaD (87%). This is reflected by the fact that the level of expression of CFA/I fimbriae induced by CsvR is not as high as when expression is induced by CfaD or Rns.  相似文献   

7.
8.
9.
Heat-labile enterotoxin (LT) is an important virulence factor expressed by enterotoxigenic Escherichia coli. The route of LT secretion through the outer membrane and the cellular and extracellular localization of secreted LT were examined. Using a fluorescently labeled receptor, LT was found to be specifically secreted onto the surface of wild type enterotoxigenic Escherichia coli. The main terminal branch of the general secretory pathway (GSP) was necessary and sufficient to localize LT to the bacterial surface in a K-12 strain. LT is a heteromeric toxin, and we determined that its cell surface localization was mediated by the its B subunit independent of an intact G(M1) ganglioside binding site and that LT binds lipopolysaccharide and G(M1) concurrently. The majority of LT secreted into the culture supernatant by the GSP in E. coli associated with vesicles. Only a mutation in hns, not overexpression of the GSP or LT, caused an increase in vesicle yield, supporting a specific vesicle formation machinery regulated by the nucleoid-associated protein HNS. We propose a model in which LT is secreted by the GSP across the outer membrane, secreted LT binds lipopolysaccharide via a G(M1)-independent binding region on its B subunit, and LT on the surface of released outer membrane vesicles interacts with host cell receptors, leading to intoxication. These data explain a novel mechanism of vesicle-mediated receptor-dependent delivery of a bacterial toxin into a host cell.  相似文献   

10.
Production and release of heat-labile toxin (LT) by wild-type enterotoxigenic Escherichia coli (ETEC) strains, isolated from diarrheic and asymptomatic Brazilian children, was studied under in vitro and in vivo conditions. Based on a set of 26 genetically diverse LT(+) enterotoxigenic E. coli strains, cell-bound LT concentrations varied from 49.8 to 2415 ng mL(-1). The amounts of toxin released in culture supernatants ranged from 0% to 50% of the total synthesized toxin. The amount of LT associated with secreted membrane vesicles represented <5% of the total toxin detected in culture supernatants. ETEC strains secreting higher amounts of LT, but not those producing high intracellular levels of cell-bound toxin, elicited enhanced fluid accumulation in tied rabbit ileal loops, suggesting that the strain-specific differences in production and secretion of LT correlates with symptoms induced in vivo. However, no clear correlation was established between the ability to produce and secrete LT and the clinical symptoms of the infected individuals. The present results indicate that production and release of LT by wild-type human-derived ETEC strains are heterogeneous traits under both in vitro and in vivo growth conditions and may impact the clinical outcomes of infected individuals.  相似文献   

11.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

12.
Quorum sensing negatively influences virulence gene expression in certain toxigenic Vibrio cholerae strains. At high cell densities, the response regulator LuxO fails to reduce the expression of HapR, which, in turn, represses the expression of the virulence cascade. A critical regulatory step in the cascade is activation of tcpPH expression by AphA and AphB. We show here that HapR influences the virulence cascade by directly repressing aphA expression. In strain C6706, aphA expression was increased in a delta hapR mutant and decreased in a delta luxO mutant, indicating a negative and positive influence, respectively, of these gene products on the promoter. Overexpression of HapR also reduced aphA expression in both C6706 and Escherichia coli. DNase I footprinting showed that purified HapR binds to the aphA promoter between -85 and -58. Although it appears that quorum sensing does not influence virulence gene expression in strain O395 solely because of a frameshift in hapR, overproduced HapR did not repress expression from the O395 aphA promoter in either Vibrio or E. coli, nor did the protein bind to the promoter. Two basepair differences from C6706 are present in the O395 HapR binding site at -85 and -77. Introducing the -77 change into C6706 prevented HapR binding and repression of aphA expression. This mutation also eliminated the repression of toxin-co-regulated pilus (TCP) and cholera toxin (CT) that occurs in a delta luxO mutant, indicating that HapR function at aphA is critical for density-dependent regulation of virulence genes.  相似文献   

13.
Crude messenger ribonucleic acid fractions isolated from Corynebacterium diphtheriae and Escherichia coli were translated in an E. coli in vitro protein-synthesizing system and yielded precursors of the secreted proteins diphtheria toxin and alkaline phosphatase, respectively. Addition of inverted E. coli inner membrane vesicles to the system during the initial stages of translation resulted in the intravesicular segregation of mature diphtheria toxin and alkaline phosphatase. Outer membrane vesicles or inner membrane vesicles whose cytoplasmic surfaces had been treated with pronase could not mediate transmembrane transfer of diphtheria toxin or alkaline phosphatase. However, inner membrane vesicles isolated from E. coli spheroplasts which had been treated with pronase and inner membrane vesicles complexed with ribosomes during pronase treatment were functional in transmembrane transfer. At temperatures below the phase transition of E. coli membranes, no intravesicular segregation of alkaline phosphatase or diphtheria toxin was observed. The precursor forms of each protein accumulated free from the vesicles. These results suggest that an inner membrane protein, exposed on the cytoplasmic surface, plays an integral role in secretion.  相似文献   

14.
Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence.  相似文献   

15.
16.
17.
Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of Rns does not form homodimers in vivo. Exposure of Rns to the chemical cross-linker glutaraldehyde revealed that the full-length protein is also a monomer in vitro. Nevertheless, deletion analysis of Rns demonstrated that the first 60 amino acids of the protein are essential for the activation and repression of Rns-regulated promoters in vivo. Amino-terminal truncation of Rns abolished DNA binding in vitro, and two randomly generated mutations, I14T and N16D, that independently abolished Rns autoregulation were isolated. Further analysis of these mutations revealed that they have disparate effects at other Rns-regulated promoters and suggest that they may be involved in an interaction with the carboxy-terminal domain of Rns. Thus, evolution may have preserved the amino terminus of Rns because it is essential for the regulator's activity even though it apparently lacks the two functions, dimerization and ligand binding, usually associated with the amino-terminal domains of AraC/XylS family members.  相似文献   

18.
Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.  相似文献   

19.
Resistance to the bactericidal action of normal human serum is one of the characteristics of virulent Yersinia enterocolitica. This property is attributable to the virulence plasmid harbored by pathogenic strains of the species. Serum resistance in Y. enterocolitica is thermoregulated, and its expression correlates well with the presence of virulence plasmid-encoded outer membrane proteins. To further examine the biochemical basis underlying resistance, we cloned a large segment (ca. 30 kilobases) of virulence plasmid DNA and studied the expression of plasmid-encoded outer membrane proteins in a serum-sensitive strain of Escherichia coli. The presence of the 160-kilodalton Y. enterocolitica-derived outer membrane protein 1 on E. coli transformants conferred a high degree of hydrophobicity, autoagglutinability, and resistance to serum killing. All of these properties were thermoregulated in E. coli with fidelity, suggesting that a functional thermoregulatory element was present in the cloned DNA. Elimination of protein 1 from the outer membrane of E. coli transformants by insertional inactivation of the structural gene with a Kanr gene cassette abrogated all of these properties and returned the serum-sensitive phenotype.  相似文献   

20.
The enterotoxigenic Escherichia coli (ETEC) strain Ec2173, causing post weaning diarrhoea in swine, harbours six plasmids ranging from 13 to 200 kb in size. The heat stable toxin genes sta, stb and a tetracycline resistance gene were located on a self conjugative 120-kb plasmid, called pTC. In the cloned ColE1 type origin of replication of pTC a deletion was detected compared to other ColE1 replicons affecting the replication modulator gene rom. Epidemiological studies on ETEC isolates showed that pTC-like plasmids are widely distributed among porcine ETEC strains; thus representing an example of co-evolution of antibacterial resistance and virulence in pathogenic E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号