首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EFC) procedure, a PCR-only method that eliminates all variables other than PCR efficiency by circumventing enzymatic treatments. We compared the cloning efficiency of EFC with that of Ligation Independent Cloning (LIC). Both methods are well suited for HTP cloning, but EFC yields three times more transformants and a cloning efficiency of 91%, comparable with recombinational cloning methods and significantly better than LIC (79%). EFC requires only nanogram amounts of both vector and insert, does not require highly competent cells and is, in contrast to LIC, largely insensitive to variations in PCR product concentration. Automated protein expression screening of expression strains directly transformed with EFC reactions showed, that the traditional preceding step via a cloning strain can be circumvented. EFC proves an efficient and robust HTP cloning method, that is compatible with existing Ligation Independent Cloning vectors, and highly suitable for automation.  相似文献   

3.
Cloning grills are aluminum grids designed to divide an agar plate into segments, thereby multiplying the number of E. coli cultures which can be streaked out on a single plate. The grills are autoclaved and placed in square petri dishes immediately after hot agar is poured. When the agar solidifies, the grill remains embedded in the media, and each of the 12 lanes accommodates the streaking out of a single culture. As the spacing of the grill lanes is the same as that of a 96-well plate, 12 cultures can be streaked at a time using a 12-channel pipette. This allows a plate of 96 cultures to be rapidly and accurately plated for colony isolation on only eight agar plates.  相似文献   

4.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   

5.

Background

Adenovectors are widely used for efficient delivery of genes into a variety of cell types and organisms. However, the construction of the desired vector/genes combination, especially if it involves the cloning of several gene cassettes, can be laborious due to the large size of these vectors. New methods are needed to simplify the construction of complex combinations of gene cassettes into adenovectors.

Methods

Using simple cloning techniques and exploiting the λ‐phage packaging system, we devised efficient methods for the ‘selection’ of the desired vector constructs. Thus we generated a series of cosmids containing the adeno helper dependent (HD) backbone in which we inserted cis‐ and trans‐acting tetracycline (tet) elements for the regulation of any gene of interest. One of these cosmids has been used to produce an HD adenovirus carrying a tetracycline‐regulated gene expressing β‐galactosidase.

Results

We have demonstrated that the adeno‐cosmid system allows rapid and efficient cloning of genes of interest in helper dependent vectors, and described a prototype ‘ready‐to‐use’ vector in which any gene of interest can be easily expressed under the control of the tet system. The HD viruses produced with this novel methodology can be grown at high titers, can be easily separated from the helper adenovirus, and allow delivery and regulated gene expression in a variety of tissues.

Conclusions

Exploiting the λ‐packaging system, complex adeno constructs can be generated with a simple and reproducible protocol, which allows selection of the desired size construct, counterselecting for the frequently observed intramolecular recombinations and deletions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

6.
Gene trapping is a high-throughput insertional mutagenesis approach that has been primarily used in mouse embryonic stem cells (ESCs). As a high throughput technology, gene trapping helped to generate tenth of thousands of ESC lines harboring mutations in single genes that can be used for making knock-out mice. Ongoing international efforts operating under the umbrella of the International Knockout Mouse Consortium (IKMC; www.knockoutmouse.org) aim to generate conditional alleles for every protein coding gene in the mouse genome by high throughput conditional gene targeting and trapping. Here, we provide protocols for gene trapping in ESCs that can be easily adapted to any other mammalian cell. We further provide protocols for handling and verifying conditional gene trap alleles in ESC lines obtained from the IKMC repositories and describe a highly efficient method for the postinsertional modification of gene trap alleles. More specifically, we describe a protein tagging strategy based on recombinase mediated cassette exchange (RMCE) that enables protein localization and protein-protein interaction studies under physiological conditions.  相似文献   

7.
Yoon JR  Laible PD  Gu M  Scott HN  Collart FR 《BioTechniques》2002,33(6):1328-1333
High-throughput approaches for gene cloning and expression require the development of new nonstandard tools for molecular biologists and biochemists. We introduce a Web-based tool to design primers specifically for the generation of expression clones for both laboratory-scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for the simultaneous amplification of multiple target genes.  相似文献   

8.
We describe a high throughput gene expression platform based on microfluidic dynamic arrays. This system allows 2,304 simultaneous real time PCR gene expression measurements in a single chip, while requiring less pipetting than is required to set up a 96 well plate. We show that one can measure the expression of 45 different genes in 18 tissues with replicates in a single chip. The data have excellent concordance with conventional real time PCR and the microfluidic dynamic arrays show better reproducibility than commercial DNA microarrays.  相似文献   

9.
Abstract Derivatives of an IncW incompatibility plasmid with a low copy number are described which can be used for gene cloning or for analysing gene expression in conditions similar to those found in the host chromosome. Gene expression can be monitored after construction of operon or protein fusions with the lacZYA operon and measurement in Escherichia coli of the β-galactosidase activity.  相似文献   

10.
11.
构建定向T载体用于基因克隆和表达   总被引:1,自引:0,他引:1  
传统的T载体克隆方法需要烦琐的后续步骤来筛选和鉴定重组子,并且无法实现目的基因的定向克隆。为了克服这些问题,本研究在pET-23a(+)的基础上构建了定向T载体pETG,首先通过定点诱变消除pET-23a(+)上的两个BfuⅠ位点得到PET-23aM;设计一对引物在5端各引入一个BfuⅠ位点,下游引物紧邻BfuⅠ位点引入13 bp的部分LacO序列,用该引物从pHBM2002上扩增Prrn-gfp表达盒,插入PET-23aM的NdeⅠ和XhoⅠ位点,得到定向T载体pETG。PCR扩增的目的基因通过下游引物引入7 bp剩余的LacO序列,该基因片段与BfuⅠ酶切制备的定向T载体连接、转化大肠杆菌DH10β感受态细胞,通过补加了X-gal的平板筛选蓝色重组子。质粒酶切和PCR鉴定表明蓝色菌落全部为定向插入的重组子,重组效率100%,利用本方法成功地定向克隆了103个人类肝蛋白编码基因cDNA,克隆过程无需复杂的步骤筛选鉴定重组子。随机选择了其中的8个基因的克隆进行表达,结果显示8个克隆均在大肠杆菌中获得成功表达。该结果表明定向T载体构建成功,并且该载体非常适合基因的克隆和表达。  相似文献   

12.
We present an analysis of physical chemical constraints on the accuracy of DNA micro-arrays under equilibrium and nonequilibrium conditions. At the beginning of the article we describe an algorithm for choosing a probe set with high specificity for targeted genes under equilibrium conditions. The algorithm as well as existing methods is used to select probes from the full Saccharomyces cerevisiae genome, and these probe sets, along with a randomly selected set, are used to simulate array experiments and identify sources of error. Inasmuch as specificity and sensitivity are maximum at thermodynamic equilibrium, we are particularly interested in the factors that affect the approach to equilibrium. These are analyzed later in the article, where we develop and apply a rapidly executable method to simulate the kinetics of hybridization on a solid phase support. Although the difference between solution phase and solid phase hybridization is of little consequence for specificity and sensitivity when equilibrium is achieved, the kinetics of hybridization has a pronounced effect on both. We first use the model to estimate the effects of diffusion, crosshybridization, relaxation time, and target concentration on the hybridization kinetics, and then investigate the effects of the most important kinetic parameters on specificity. We find even when using probe sets that have high specificity at equilibrium that substantial crosshybridization is present under nonequilibrium conditions. Although those complexes that differ from perfect complementarity by more than a single base do not contribute to sources of error at equilibrium, they slow the approach to equilibrium dramatically and confound interpretation of the data when they dissociate on a time scale comparable to the time of the experiment. For the best probe set, our simulation shows that steady-state behavior is obtained in a relaxation time of approximately 12-15 h for experimental target concentrations approximately (10(-13) - 10(-14))M, but the time is greater for lower target concentrations in the range (10(-15)-10(-16))M. The result points to an asymmetry in the accuracy with which up- and downregulated genes are identified.  相似文献   

13.
基因克隆的方法进展   总被引:1,自引:0,他引:1  
基因克隆一般分为定位克隆和表型克隆。表型克隆进展较快,主要有消减杂交、代表性差异分析法、mRNA差异显示、DNA转染法及抑制消减杂交法。抑制消减杂交法是1996年报道的一种表型克隆的新方法,是目前寻找差异表达基因的较有效方法,较过去的方法有许多先进之外。本文对此方法的原理及应用作一详细介绍,并与其他方法作简单比较。  相似文献   

14.
基因克隆的常用方法介绍   总被引:7,自引:0,他引:7  
为能快速、准确地克隆出有意义的基因,本文介绍了目前常用的一些基因克隆方法,如差异显示PCR、抑制性差减杂交、RAP-PCR、代表性差异显示、酵母双杂交系统、cDNA直接捕捉法等;并对这些方法作了简要的评价,以利于大家选择适合自己的方法。  相似文献   

15.

Background  

Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics.  相似文献   

16.
Universal promoter for gene expression without cloning: expression-PCR   总被引:9,自引:0,他引:9  
  相似文献   

17.
The production of diffraction quality crystals for the structural determination of inner membrane proteins relies on obtaining large amounts of stable protein. Achieving this, by finding the correct parameters to successfully express and purify these proteins is often time-consuming and frustrating. The methods described here examine the most important parameters, in both expression and purification, quickly and simply. They take into account methods previously used in successful structural determinations of inner membrane proteins and collect and analyse data for use in further experiments and to investigate overall trends. These methods make use of histidine-tagged membrane proteins with a green fluorescent protein fusion but could be adapted easily for other proteins.  相似文献   

18.
Clustering methods for microarray gene expression data   总被引:1,自引:0,他引:1  
Within the field of genomics, microarray technologies have become a powerful technique for simultaneously monitoring the expression patterns of thousands of genes under different sets of conditions. A main task now is to propose analytical methods to identify groups of genes that manifest similar expression patterns and are activated by similar conditions. The corresponding analysis problem is to cluster multi-condition gene expression data. The purpose of this paper is to present a general view of clustering techniques used in microarray gene expression data analysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号