首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidase (donor: H2O2 oxi-doreductase [EC 1.11.1.7]) was purified from the culture broth of the hyphomycete Arthromyces ramosus in the early log phase to show a single band on SDS-PAGE. The crystals of A. ramosus peroxidase (ARP) were formed by salting out with ammonium sulfate at room temperature and pH 7.5. The repeated seeding technique was employed to grow the crystals to the size large enough for X-ray diffraction study. The crystals were characterized as tetragonal, space group P42212, with unit cell dimensions of a = b = 74.5 Å, c = 117.6 Å. The asymmetric unit contains one molecule of peroxidase. They diffract X-rays to at least 2.0 Å resolution and are stable to X-rays. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Rat catechol O-methyltransferase cDNA was introduced into an E. coli expression vector pKEX14, which utilizes the inducible T7 promoter. Active and soluble recombinant catechol O-methyltransferase was produced in bacteria and purified to electrophoretic homogeneity by chromatographic procedures. The purified enzyme has been crystallized by the method of vapor diffusion using polyethylene glycol as precipitant. The space group is P3(1)21 or P3(2)21 with a = b = 51.3 A and c = 168.5 A and one molecule in the asymmetric unit. The crystals diffract beyond 3.2 A and are suitable for three-dimensional X-ray structure determination.  相似文献   

3.
    
Studies on the transport kinetics and the posttranslational modification of synapsin I in mouse retinal ganglion cells were performed to obtain an insight into the possible factors involved in forming the structural and functional differences between the axon and its terminals. Synapsin I, a neuronal phosphoprotein associated with small synaptic vesicles and cytoskeletal elements at the presynaptic terminals, is thought to be involved in modulating neurotransmitter release. The state of phosphorylation of synapsin I in vitro regulates its interaction with both synaptic vesicles and cytoskeletal components, including microtubules and microfilaments. Here we present the first evidence that in the mouse retinal ganglion cells most synapsin I is transported down the axon, together with the cytomatrix proteins, at the same rate as the slow component b of axonal transport, and is phosphorylated at both the head and tail regions. In addition, our data suggest that, after synapsin I has reached the nerve endings, the relative proportions of variously phosphorylated synapsin I molecules change, and that these changes lead to a decrease in the overall content of phosphorus. These results are consistent with the hypothesis that, in vivo, the phosphorylation of synapsin I along the axon prevents the formation of a dense network that could impair organelle movement. On the other hand, the dephosphorylation of synapsin I at the nerve endings may regulate the clustering of small synaptic vesicles and modulate neurotransmitter release by controlling the availability of small synaptic vesicles for exocytosis.  相似文献   

4.
Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes.  相似文献   

5.
The brain-specific synaptic guanosine triphosphatase (GTPase)-activating protein (SynGAP) is important in synaptic plasticity. It shows dual specificity for the small guanine nucleotide-binding proteins Rap and Ras. Here, we show that RapGAP activity of SynGAP requires its C2 domain. In contrast to the isolated GAP domain, which does not show any detectable RapGAP activity, a fragment comprising the C2 and GAP domains (C2-GAP) stimulates the intrinsic GTPase reaction of Rap by approximately 1 x 10(4). The C2-GAP crystal structure, complemented by modelling and biochemical analyses, favours a concerted movement of the C2 domain towards the switch II region of Rap to assist in GTPase stimulation. Our data support a catalytic mechanism similar to that of canonical RasGAPs and distinct from the canonical RapGAPs. SynGAP presents the first example, to our knowledge, of a GAP that uses a second domain for catalytic activity, thus pointing to a new function of C2 domains.  相似文献   

6.
7.
  总被引:1,自引:0,他引:1  
GammaB-crystallin consists of two domains each comprising two \"Greek key\" motifs. Both domains fold independently, and domain interactions contribute significantly to the stability of the C-terminal domain. In a previous study (Palme S et al., 1996, Protein Sci 6:1529-1636) it was shown that Phe56 from the N-terminal domain, a residue involved in forming a hydrophobic core at the domain interface, effects the interaction of the two domains, and therefore, the stability of the C-terminal domain. Ala or Asp at position 56 drastically decreased the stability of the C-terminal domain, whereas Trp had a more moderate effect. In this article we present the X-ray structures of these interface mutants and correlate them with the stability data. The mutations do not effect the overall structure of the molecule. No structural changes are observed in the vicinity of the replaced residue, suggesting that the local structure is too rigid to allow compensations for the amino acid replacements. In the mutants gammaB-F56A and -F56D, a solvent-filled groove accessible to the bulk solvent is created by the replacement of the bulky Phe side chain. In gammaB-F56W, the pyrrole moiety of the indole ring replaces the phenyl side chain of the wild type. With the exception of gammaB-F56W, there is a good correlation between the hydrophobicity of the amino acid at position 56 according to the octanol scale and the stability of the C-terminal domain. In gammaB-F56W, the C-terminal domain is less stable than estimated from the hydrophobicity, presumably because the ring nitrogen (Nepsilon1) has no partner to form hydrogen bonds. The data suggest that the packing of hydrophobic residues in the interface core is important for domain interactions and the stability of gammaB-crystallin. Apparently, for protein stability, the same principles apply for hydrophobic cores within domains and at domain interfaces.  相似文献   

8.
9.
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway.  相似文献   

10.
To characterize the structural requirements for the conformational flexibility in plasminogen activator inhibitor-1 (Pal-1) we have crystallized human PAI-1, carrying a mutation which stabilizes PAI-1 in its substrate form. Crystallization was performed by the hanging drop diffusion method at pH 8.5 in the presence of 19% (w/v) polyethyleneglycol 4000 as a precipitant. The crystals appear after 3 days at 23°C and belong to the monoclinic space group C2 with cell dimensions of a=151.8 Å, b=47.5 Å, c=62.7 Å, and β=113.9°, and one molecule in the asymmetric unit. The X-ray diffraction data set contains data with a limiting resolution of 2.5 Å. Biochemical analysis of the redissolved crystals indicated that during the crystallization process, cleavage had occurred in the active site loop at the P1-P1′ position. The availability of good-quality crystals of the cleaved form of this serpin will allow its three-dimensional structure to be solved and will provide detailed information on the structure-function relationship in PAI-1. © 1995 Wiley-Liss, Inc.  相似文献   

11.
GafD in Escherichia coli G (F17) fimbriae is associated with diarrheal disease, and the structure of the ligand-binding domain, GafD1-178, has been determined at 1.7A resolution in the presence of the receptor sugar N-acetyl-D-glucosamine. The overall fold is a beta-barrel jelly-roll fold. The ligand-binding site was identified and localized to the side of the molecule. Receptor binding is mediated by side-chain as well main-chain interactions. Ala43-Asn44, Ser116-Thr117 form the sugar acetamide specificity pocket, while Asp88 confers tight binding and Trp109 appears to position the ligand. There is a disulfide bond that rigidifies the acetamide specificity pocket. The three fimbrial lectins, GafD, FimH and PapG share similar beta-barrel folds but display different ligand-binding regions and disulfide-bond patterns. We suggest an evolutionary path for the evolution of the very diverse fimbrial lectins from a common ancestral fold.  相似文献   

12.
解析蛋白质的三维结构具有重要的生物学意义,更是蛋白质功能研究和理性药物设计的基础。目前解析蛋白质结构最重要的方法是X-射线衍射晶体学解析技术。但是运用该技术解析蛋白质结构的关键是获得高质量的蛋白质晶体。然而,据统计仅有42%的可溶纯化蛋白质能够得到晶体,即不同蛋白质的可结晶性表现不同。由于实验方法验证蛋白质的可结晶性耗时耗力,因此,有研究者运用计算机模拟的方法预测蛋白质的可结晶性,从而节省资源与成本并且提高实验的成功率。本文结合我们的研究工作,介绍了几种目前较为成功的蛋白质可结晶性预测方法及其研究途径。  相似文献   

13.
    
《Cell reports》2020,30(8):2594-2602.e3
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   

14.
Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken alpha-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes.  相似文献   

15.
    
Arginyl-tRNA Synthetase, a class I aminoacyl tRNA synthetase playing a crucial role in protein biosynthesis, has been crystallized for the first time. Polyethylene glycol (PEG) was used as a precipitant, and the crystallization proceeded at pH 6.5. These single crystals diffracted to 2.8 A with a rotating anode X-ray source and R-axis IIc image plate detector. They have an orthorhombic space group P2(1)2(1)2 with unit cell parameters of a = 251.51 A, b = 53.12 A, and c = 52.35 A. A complete native data set has been collected at 3.1 A resolution for these crystals.  相似文献   

16.
  总被引:1,自引:2,他引:1  
FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).  相似文献   

17.
18.
    
AGAP1 is often considered to regulate membrane trafficking, protein transport and actin cytoskeleton dynamics. Recent studies have shown that aberrant expression of AGAP1 is associated with many diseases, including neurodevelopmental disorders and acute lymphoblastic leukemia. It has been proposed that the GTP-binding protein-like domain (GLD) is involved in the binding of cofactors and thus regulates the catalytic activity of AGAP1. To obtain a better understanding of the pathogenic mechanism underpinning AGAP1-related diseases, it is essential to obtain structural information. Here, the GLD (residues 70–235) of AGAP1 was overexpressed in Escherichia coli BL21 (DE3) cells. Affinity and gel-filtration chromatography were used to obtain AGAP1GLD with high purity for crystallization. Using the hanging-drop vapor-diffusion method with the protein at a final concentration of 20 mg ml−1, AGAP1GLD protein crystals of suitable size were obtained. The crystals were found to diffract to 3.0 Å resolution and belonged to space group I4, with unit-cell parameters a = 100.39, b = 100.39, c = 48.08 Å. The structure of AGAP1GLD exhibits the highly conserved functional G1–G5 loops and is generally similar to other characterized ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), implying an analogous function to Arf GAPs. Additionally, this study indicates that AGAP1 could be classified as a type of NTPase, the activity of which might be regulated by protein partners or by its other domains. Taken together, these results provide insight into the regulatory mechanisms of AGAP1 in cell signaling.  相似文献   

19.
    
Type III antifreeze protein, more specifically the recombinant QAE-Sephadex-binding isoform, has been crystallized in 50-55% saturated ammonium sulfate, 0.1 M sodium acetate, pH 4.0-4.5. The resultant crystals belong to the orthorhombic space group P212121 with a = 32.60 A, b = 39.00 A, and c = 46.57 A and diffract to at least 1.7 A. A set of 1.7-A native data has been collected, with completeness 93.4% and Rsym of 0.069. Initial screening for heavy-atom derivatives has yielded a Pt-bound derivative.  相似文献   

20.
UDP-galactose 4-epimerase catalyzes the conversion of UDP-galactose to UDP-glucose during normal galactose metabolism. The molecular structure of UDP-galactose 4-epimerase from Escherichia coli has now been solved to a nominal resolution of 2.5 A. As isolated from E. coli, the molecule is a dimer of chemically identical subunits with a total molecular weight of 79,000. Crystals of the enzyme used for this investigation were grown as a complex with the substrate analogue, UDP-benzene, and belonged to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 76.3 A, b = 83.1 A, c = 132.1 A, and one dimer per asymmetric unit. An interpretable electron density map calculated to 2.5 A resolution was obtained by a combination of multiple isomorphous replacement with six heavy atom derivatives, molecular averaging, and solvent flattening. Each subunit of epimerase is divided into two domains. The larger N-terminal domain, composed of amino acid residues 1-180, shows a classic NAD+ binding motif with seven strands of parallel beta-pleated sheet flanked on either side of alpha-helices. The seventh strand of the beta-pleated sheet is contributed by amino acid residues from the smaller domain. In addition, this smaller C-terminal domain, consisting of amino acid residues 181-338, contains three strands of beta-pleated sheet, two major alpha-helices and one helical turn. The substrate analogue, UDP-benzene, binds in the cleft located between the two domains with its phenyl ring in close proximity to the nicotinamide ring of NAD+. Contrary to the extensive biochemical literature suggesting that epimerase binds only one NAD+ per functional dimer, the map clearly shows electron density for two nicotinamide cofactors binding in symmetry-related positions in the dimer. Likewise, each subunit in the dimer also binds one substrate analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号