首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
* Here, the diversity of arbuscular mycorrhizal (AM) fungi was determined in a boreal herb-rich coniferous forest in relation to environmental variables. * Root samples of five plant species (Fragaria vesca, Galeobdolon luteum, Hepatica nobilis, Oxalis acetosella and Trifolium pratense) were analysed from stands differing in age and forest management intensity. * Thirty-four Glomeromycota taxa (small-subunit ribosomal RNA gene (SSU rDNA) sequence groups) were detected from 90 root samples (911 clones), including eight new taxa. Sequence groups related to Glomus intraradices were most common (MO-G3 and MO-G13). Samples of H. nobilis were colonized by more AM fungal taxa (3.68 +/- 0.31) than those of O. acetosella (2.69 +/- 0.34), but did not differ significantly in this respect from those of F. vesca (3.15 +/- 0.38). Effects of forest management, host plant species (except above) or season on the number or composition of fungal taxa in root samples were not detected, and neither were they explained by environmental variables (vegetation, soil and light conditions). * This is the most taxon-rich habitat described to date in terms of root-colonizing Glomeromycota. The data demonstrate the importance of temperate coniferous forests as habitats for AM fungi and plants. Lack of obvious fungal community patterns suggests more complex effects of biotic and abiotic factors, and possibly no adverse effect of common forest management practices on AM fungal diversity.  相似文献   

2.
3.
Glomus claroideum (Schenck & Smith emend. Walker & Vestberg) were investigated for ability to form arbuscular mycorrhiza-like symbioses with the hornwort Anthoceros punctatus (L.). Spores were transferred to a cellulose acetate filter on water agar and a small portion of an Anthoceros thallus was placed directly upon the spores. Light-microscope observations 20 days after inoculation revealed branched hyphae growing within the thallus. After 45 days, arbuscules and vesicles were studied by light- and electron-microscopy. After 60 days in water agar culture, the colonised Anthoceros thalli were transferred to a low-nutrient medium agar. Hyphae spread in the agar and newly formed spores were observed 5 weeks after the transfer. After 4 months, about 1000 spores were formed in each Petri dish. This is the first report of an experimentally established arbuscular mycorrhiza-like symbiosis between an identified fungus belonging to the Glomales and a bryophyte. Accepted: 11 January 2000  相似文献   

4.
Nitrogen (N) is known to be transferred from fungus to plant in the arbuscular mycorrhizal (AM) symbiosis, yet its metabolism, storage and transport are poorly understood. In vitro mycorrhizas of Glomus intra-radices and Ri T-DNA-transformed carrot roots were grown in two-compartment Petri dishes. (15)N- and/or (13)C-labeled substrates were supplied to either the fungal compartment or to separate dishes containing uncolonized roots. The levels and labeling of free amino acids (AAs) in the extra-radical mycelium (ERM) in mycorrhizal roots and in uncolonized roots were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Arginine (Arg) was the predominant free AA in the ERM, and almost all Arg molecules became labeled within 3 wk of supplying (15)NH(4) (+) to the fungal compartment. Labeling in Arg represented > 90% of the total (15)N in the free AAs of the ERM. [Guanido-2-(15)N]Arg taken up by the ERM and transported to the intra-radical mycelium (IRM) gave rise to (15)N-labeled AAs. [U-(13)C]Arg added to the fungal compartment did not produce any (13)C labeling of other AAs in the mycorrhizal root. Arg is the major form of N synthesized and stored in the ERM and transported to the IRM. However, NH(4) (+) is the most likely form of N transferred to host cells following its generation from Arg breakdown.  相似文献   

5.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

6.
Sequencing of the 5' end of the large ribosomal subunit (LSU rDNA) and quantitative polymerase chain reaction (qPCR) were combined to assess the impact of four annual Medicago species (Medicago laciniata, Medicago murex, Medicago polymorpha and Medicago truncatula) on the genetic diversity of arbuscular mycorrhizal (AM) fungi, and on the relative abundance of representative AM fungal genotypes, in a silty-thin clay soil (Mas d'Imbert, France). Two hundred and forty-six Glomeromycete LSU rDNA sequences from the four plant species and the bulk soil were analysed. The high bootstrap values of the phylogenetic tree obtained allowed the delineation of 12 operational taxonomic units (OTUs), all belonging to Glomus. Specific primers targeting Glomeromycetes and major OTUs were applied to quantify their abundance by qPCR. Glomeromycetes and targeted OTUs were significantly more abundant in the root tissues than in the bulk soil, and the frequencies of three of them differed significantly in the root tissues of the different plant species. These differences indicate that, despite the absence of strict host specificity in mycorrhizal symbiosis, there was a preferential association between some AM fungal and plant genotypes.  相似文献   

7.
8.
9.
AM真菌在有机农业发展中的机遇   总被引:3,自引:0,他引:3  
在农田生态系统中,许多农作物均为丛枝菌根(AM)真菌的优良宿主植物,当AM真菌与这些宿主植物建立共生关系之后,AM真菌的存在有益于宿主植物的生长。然而,传统农业耕作模式中化学肥料和农药的施用、耕作制度的不断调整和非宿主植物的种植等都不利于AM真菌的建植。有机农业生态系统排除了化学肥料和农药的施用,减少了对AM真菌生长不利的因素,促进了土壤中AM真菌数量的增加和群落多样性的提高。同时,AM真菌可以通过多种方式改善土壤物理结构、提高农作物对干旱胁迫的耐受能力以及宿主植物对病虫害的抗性/耐性、抑制杂草生长、促进营养物质的吸收,进而提高植物的生长和改善产品的品质。基于此,围绕AM真菌在有机农业发展中的生态学功能展开论述,分析当前有机农业生态系统存在的问题,探讨利用AM真菌发展有机农业的可行性及其发展的机遇,以期促进AM真菌在有机农业发展中的应用。  相似文献   

10.
11.
A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes GmFOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA. Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were characterized by SSCP (single stranded conformation polymorphism) and sequencing. All spore genotypes were unique suggesting that no recombination was taking place in the populations. There were no overall differences in the distribution of genotypes in the two fields and identical genotypes could be sampled from both fields. Analysis of gene diversity indicated that Glomus populations are subdivided between plots within each field. There were however, no subdivision between the fields.  相似文献   

12.
The hyphal healing mechanism (HHM) has been shown to differ between Gigasporaceae and Glomeraceae. However, this process has not been considered under (severe) physical stress conditions. Scutellospora reticulata and Glomus clarum strains were cultured monoxenically. The impact of long distance separating cut extremities of hyphae and of multiple injuries within hyphae on the HHM was monitored. For long distances (>5000 microm) separating cut extremities, hyphae healing was observed in half the cases in S. reticulata and was absent in G. clarum. For multiple-injured hyphae, the HHM was always oriented towards the complete recovery of hyphae integrity in S. reticulata, while in G. clarum, the growing hyphal tips (GHTs) could indifferently reconnect cut sections, by-pass cut sections or develop into the environment. Hyphae behaviour under severe physical stress clearly differentiated S. reticulata from G. clarum, suggesting that both fungi have developed different strategies for colony growth to survive under adverse conditions.  相似文献   

13.
* The influence of carbohydrate availability to mycorrhizal roots on uptake, metabolism and translocation of phosphate (P) by the fungus was examined in axenic cultures of transformed carrot (Daucus carota) roots in symbiosis with Glomus intraradices. * 14C-labelled carbohydrates, 33P-phosphate and energy dispersive X-ray microanalysis were used to follow the uptake and transfer of C and P in the arbuscular mycorrhizal (AM) symbiosis. * The uptake of P by the extraradical mycelium (ERM) and its translocation to the mycorrhizal roots was stimulated and the metabolic and spatial distribution of P within the fungus were altered in response to increased carbohydrate availability. Sucrose supply resulted in a decrease of polyphosphates and an increased incorporation into phospholipids and other growth-related P pools and also caused elevated cytoplasmic P levels in the intraradical mycelium (IRM) within the root and higher cytoplasmic P levels in the root cortex. * These findings indicate that the uptake of P by the fungus and its transfer to the host is also stimulated by the transfer of carbon from plant to fungus across the mycorrhizal interface.  相似文献   

14.
15.
丛枝菌根共生体(arbuscular mycorrhiza, AM)是丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物之间形成的互惠共生形式.共生体中的碳、氮交换和代谢影响着宿主植物和共生真菌之间的营养平衡和资源重新分配,在物质和能量循环中发挥着重要作用.宿主植物光合固定的碳输送到真菌内,并且分解和释放真菌所需的生命物质和能量,包括促进孢子萌发、菌丝生长和提高氮等营养元素的吸收;而菌根真菌利用宿主植物提供的碳骨架和能量,发生氮的转化和运输,最终传递给宿主植物供其利用.本文综述了丛枝菌根共生体中碳、氮传输和代谢的主要模式,碳、氮的交互影响和调控机制,以促进丛枝菌根在可持续农业和生态系统中的应用.  相似文献   

16.
17.
Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium pilosella. Roots were sampled from May to November along eight 30-m transects, 30-120 m apart. Phylogenetic analysis of the sequences revealed 11 phylogenetic clusters within the clade of Glomus. The phylogenetic clusters were patchily distributed within the area; time had no influence on the distribution pattern. The dominant cluster covered up to 10 m along the transect, whereas other clusters formed what can be interpreted as small individual mycelia. Four of the phylogenetic clusters included known species; the other clusters, including the dominant sequence types, were unknown. The dominant phylogenetic cluster enclosed nine haplotypes, and analyses of genetic diversity of this phylogenetic cluster showed that the total diversity could be found within single root fragments, suggesting that the multiple sequences were derived from a single individual.  相似文献   

18.
19.
Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal structures. There were no growth responses observed in the plants caused by mycorrhizal symbiosis. The two morphological types had a similar percentage of root colonized, but the Arum-type had higher metabolic activity. Most of the mycorrhizal structures (88%) showed succinate dehydrogenase activity; about half showed acid phosphatase activity; and a small percentage showed alkaline phosphatase activity. Phosphatase activity was highest in arbuscules and low in intercellular hyphae in the Arum-type colonization. In the Paris-type, hyphal coils and arbusculate coils showed a similar intermediate percentage of phosphatase activity. We conclude that acid phosphatase is more important than alkaline phosphatase in both colonization types. We discuss the possibility that, whereas arbuscules in Arum-type are the main site for phosphorus release to the host plant, both the hyphal and arbusculate coils may be involved in the Paris-type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号