首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine [D-Ala2]deltorphin II (DL-II:Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2) analogs having various aliphatic amino acids at positions 5 and 6 were synthesized to gain more information about the role of hydrophobic Val5,6 residues for the delta-opioid receptor selectivity. Binding assays of analogs replaced by Ala demonstrated the importance of hydrophobic Val5,6 residues in DL-II for delta-affinity and selectivity, and especially critical importance of Val5 residue for higher delta-selectivity. By enhancing the hydrophobicity of residues at positions 5 and 6, we have developed analogs with very high delta-affinity and selectivity over those of DL-II, e.g., [Ile5,6], [norleucine5,6] and [gamma-methyl-leucine5,6]DL-II, which will be useful as delta-selective ligands for investigation of the physiological role of opioid receptors.  相似文献   

2.
Replacement of Phe3 in the endogenous delta-opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid beta-isopropylphenylalanine (beta-iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand-binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [beta-iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [beta-iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 nM), bioassay potency (IC50 = 1.23 nM in MVD assay) and exceptional selectivity for the delta-opioid receptor over the mu-opioid receptor (30 000). Further conformational studies based on two-dimensional NMR and computer-assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)-beta-iPrPhe3 residues adopt trans side-chain conformations, and the linear peptide backbone favors a distorted beta-turn conformation.  相似文献   

3.
Two antisense oligodeoxynucleotides (A-ODN), targeting delta-opioid receptor mRNA (DOR) and two mismatch ODN sequences (mODN) were continuously infused for 24 days into the lateral brain ventricles of Wistar rats. The density of delta-opioid receptors in rat brain homogenates was measured by saturation binding experiments using four selective ligands, two agonists ([D-Ala2, Glu4]-deltorphin and DPDPE) and two antagonists (Dmt-Tic-OH and naltrindole), and by immunoblotting SDS solubilized receptor protein. In brain membranes of mODN or saline-infused rats, the rank order of delta-opioid receptor density, calculated by Bmax values of the four delta-opioid receptor ligands, was: [D-Ala2, Glu4]deltorphin approximately Dmt-Tic-OH approximately naltrindole (86-118 fmo/mg protein) > DPDPE (73.6+/-6.3 fmol/mg protein). At the end of the 24 day infusion of A-ODN targeting DOR nucleotide sequence 280299 (A-ODN280-299), the Bmax of DPDPE (62.4+/-3.2 fmol/mg protein) was significantly higher than that of Dmt-Tic-OH (31.5+/-3.9 fmol/mg protein). Moreover, both the Kd value for DPDPE saturation binding and the Ki value for Dmt-Tic-OH displacement by DPDPE were halved. In contrast, an A-ODN treatment targeting exon 3 (A-ODN741-760) decreased the specific binding of [D-Ala2, Glu4]deltorphin and Dmt-Tic-OH significantly less (67%-81%) than the binding of DPDPE (53%), without changes in DPDPE Ki and KD values. No A-ODN treatment modified the specific binding of the micro-opioid agonist DAMGO and of the k-selective opioid receptor ligand U69593. On the Western blot of solubilized striatum proteins, A-ODN(280-299) and A-ODN(741-760) downregulated the levels of the DOR protein, whereas the corresponding mODN were inactive. The 24-day infusion of A-ODN(280-299) inhibited the rat locomotor response to [D-Ala2, Glu4]deltorphin but not to DPDPE. Intracerebroventricular (i.c.v.) infusion of A-ODN(741-760) reduced the locomotor responses to both delta-opioid receptor agonists, whereas mODN infusion never affected agonist potencies. In conclusion, these results demonstrate that 24-day continuous i.c.v. infusion of A-ODN targeting the nucleotide sequence 280-299 of DOR can differentially knockdown delta1 and delta2 binding sites in the rat brain.  相似文献   

4.
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations 相似文献   

5.
In this study, we evaluated the effects of intrathecally administered agonists of mu- and delta-opioid receptor and their analogs on the pain-induced behavior and expression of c-Fos immunoreactivity in the spinal cord, elicited by intraplantar injection of 12% formalin to the hindpaw of the rat. Previous report from our laboratory and other author's study indicated that intrathecal administration of mu agonists morphine and endomorphin-2 and delta-opioid agonist deltorphin II produced a dose-dependent antinociceptive effects in acute and inflammatory pain. In this study, intrathecal injection of morphine (10 microg), endomorphin-2 (5 microg) and its analog Dmt-endomorphin-2 (10 microg) significantly decreased the formalin-induced pain behavior, and lowered a number of c-Fos positive neurons in the laminae I, II and III of the spinal cord by about 40%, 30% and 40%, respectively. Significant reduction of formalin-induced behavioral responses was also observed after i.th. administration of deltorphin II (15 microg) and its analog ile-deltorphin II (15 microg). Agonists of delta-opioid receptor significantly reduced a number of c-Fos positive neurons by about 28% and 40%, respectively. Analog of endomorphin-2 and analog of deltorphin II suppressed more potently expression of c-Fos in the dorsal horn of the spinal cord than the parent peptides. Our study indicates that new analogs of mu- and delta-opioid receptor exhibit strong antinociceptive potency similar or even higher than the parent peptides, and that their effect is positively correlated with the inhibition of c-Fos expression.  相似文献   

6.
Desensitization and internalization of G protein-coupled receptors observed after agonist activation are considered two important regulatory processes of receptor transduction. Endogenous human delta-opioid receptors (hDOR) are differentially regulated in terms of desensitization by peptide ([d-Pen2,5]enkephalin (DPDPE) and Deltorphin I) and alkaloid (etorphine) agonists in the neuroblastoma cell line SK-N-BE (Allouche, S., Roussel, M., Marie, N., and Jauzac, P. (1999) Eur. J. Pharmacol. 371, 235-240). In the present study, we examined the role of hDOR internalization and down-regulation in this differential desensitization. Sustained activation by peptides for 30 min caused a marked decrease of both [3H]diprenorphine binding sites and hDOR immunoreactivity, observed in a Western blot, whereas a moderate reduction by 30% was observed after a 30- and 60-min etorphine exposure in binding experiments without opioid receptor degradation. Using fluorescence microscopy, we visualized hDOR internalization promoted by different agonists in SK-N-BE cells expressing FLAG-tagged hDOR. Agonist withdrawal results in a greater recycling process correlated with a stronger hDOR resensitization after etorphine treatment compared with DPDPE or Deltorphin I, as shown in binding, immunocytochemical, and functional experiments. This suggests a distinct sorting of opioid receptors after their internalization. We demonstrated a lysosomal hDOR targeting upon peptides by using chloroquine in binding, Western blot, and immunocytochemical experiments and by colocalization of this receptor with a late endosome marker. In contrast, when the recycling endosome blocker monensin was used, acceleration of desensitization associated with a strong intracellular immunostaining was observed upon etorphine treatment. The possibility of separate endocytic pathways responsible for the differential sorting of hDOR upon peptide and alkaloid ligand exposure was ruled out by binding and immunocytochemical experiments using sucrose hypertonic solution. First, these results showed complex relationships between hDOR internalization/down-regulation and desensitization. Second, we demonstrated for the first time that the same receptor could undergo a distinct sorting after internalization by peptide and alkaloid agonists.  相似文献   

7.
Important determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II (CaMK-II), corresponding to residues 281-302 of the kinase alpha-subunit sequence, were identified. Replacement of Thr286 with Ala (CaMK-(281-302 Ala286)) had no effect on either the potency (IC50 = 2 MicroM) or inhibitory mechanism (competitive with ATP) using the catalytic fragment of CaMK-II. Single replacement of charged residues in CaMK-(281-302, Ala286) identified His282, Arg283, Lys291, Arg297, and Lys298 as important determinants (greater than 10-fold increase in IC50) for potent inhibition of CaMK-II. Glu285, Asp288, Lys291, Arg296, and Lys300 were not as essential (less than 4-fold change in IC50) for potent CaMK-II inhibition. Replacement of either Arg283, Lys291, or Arg297, and Lys298 with Ala did not alter the ATP-competitive mechanism of inhibition although the Ki values increased 16-530-fold. However, replacement of His282 with Ala decreased the IC50 by 20-fold and altered the mechanism of inhibition to noncompetitive with respect to ATP. The non-protonated form of His282 was functionally active since decreasing the pH from 7.5 to 5.5 increased the IC50 of CaMK-(281-302, Ala286) almost 20-fold. Histidine protonation also appeared to disrupt the autoinhibitory domain of intact forms of CaMK-II since preincubation of non-proteolyzed rat brain CaMK-II with calcium/calmodulin (in the absence of ATP) at pH 5.5 generated up to 16% calcium-independent activity when assayed at pH 5.5. Similarly, the level of calcium-independent activity of a baculovirus-expressed Asp286 mutant CaMK-II ((D286)mCaMK alpha) increased to almost 80% calcium independence when assayed at pH 5.5 compared to only 20% when assayed at pH 7.5. The levels of calcium-independent activity of both the (D286)mCaMK alpha (at pH 5.5 and 7.5) and the rat brain CaMK-II (at pH 5.5) were sensitive to the concentrations of both ATP and peptide substrate (syntide-2) in the assays. These data suggest that the basic residues Arg283, Lys291, Arg297, and Lys298 are important for potent inhibition of CaMK-II and that the non-protonated form of His282 may play a unique role in the ATP-directed mechanism of inhibition by the CaMK-II autoinhibitory domain.  相似文献   

8.
Chronic treatment with deltaopioid agonists, similar to other agonist drugs, causes tolerance. Tolerance is a complex adaptation process that consists of multiple, cellular and neural-system adaptations. Cellular tolerance to delta-opioid agonists involves feedback-regulation of the function, concentration, and localization of the delta-opioid receptors (receptor desensitization) as well as of intracellular effectors (functional desensitization). We are using a recombinant Chinese hamster ovary cell line expressing the human delta-opioid receptors (hDOR/CHO) to investigate the molecular mechanisms of cellular tolerance. We found that the structurally distinct delta-opioid agonists mediate receptor down-regulation by different mechanisms. Thus, truncation of the last 35 C-terminal amino acids of the hDOR completely abolished DPDPE, but not SNC 80-mediated receptor down-regulation. In addition, down-regulation of the wild type-, and the truncated hDORs exhibited different inhibitor sensitivity-profile. Chronic delta-opioid agonist treatment also causes functional desensitization of forskolin-stimulated cAMP formation and cAMP overshoot in the hDOR/CHO cells. We have demonstrated that chronic SNC 80 treatment also causes concurrent phosphorylation of the adenylyl cyclase (AC) VI isoenzyme hDOR/CHO cells. Both AC superactivation and AC VI phosphorylation were SNC 80 dose-dependent, naltrindole-sensitive, and exhibited similar time course-, and protein kinase inhibitor-sensitivity profile. We hypothesize that phosphorylation of AC VI plays an important role in delta-opioid agonist-mediated AC superactivation in hDOR/CHO cells.  相似文献   

9.
Intrinsic activities of different delta opioid agonists were determined in a [35S]GTPgammaS binding assay using cell membranes from Chinese hamster ovary (CHO) cells stably expressing the wild type (hDOR/CHO) or W284L mutant human delta opioid receptor (W284L/CHO). Agonist binding affinities were regulated more robustly by sodium and guanine nucleotide in W284L/CHO than in hDOR/ CHO cell membranes. The W284L mutation selectively reduced the affinity of SNC 80 while having moderate effect ((-) TAN 67) or no effect (DPDPE) on the affinities of other delta selective agonists. The mutation had opposite effects on the intrinsic activities of agonists belonging to different chemical classes. The effects of the mutation on agonist affinities and potencies were independent from its effects on the intrinsic activities of the agonists. Maximal stimulation of [35S]GTPgammaS binding by SNC 80 was 2-fold higher in W284L mutant cell membranes than in wild type hDOR/CHO cell membranes, despite lower receptor expression levels in the W284L/CHO cells. The binding affinity of SNC 80 however, was significantly reduced (15-fold and 30-fold in the absence or presence of sodium+GDP respectively) in W284L/CHO cell membranes relative to wild type hDOR/CHO membranes. Conversely, the Emax of (-)TAN 67 in the [35S]GTPgammaS binding assay was markedly reduced (0.6-fold of that of the wild type) with only a slight (6-fold) reduction in its binding affinity. The affinity and intrinsic activity of DPDPE on the other hand remained unchanged at the W284L mutant hDOR. The mutation had similar effects on the affinities potencies and intrinsic activities of (-)TAN 67 and SB 219825. The results indicate that delta opioid agonists of different chemical classes use specific conformations for G protein activation.  相似文献   

10.
Platelet-type von Willebrand disease (PT-vWD) is an autosomal dominant bleeding disorder in which patient platelets exhibit an abnormally increased binding of circulating von Willebrand factor (vWF). We have recently shown that this abnormality is associated with a point mutation resulting in substitution of Val for Gly 233 in platelet membrane glycoprotein Ib alpha (GPIb alpha), a major component of the platelet GPIb/IX receptor for vWF. To investigate the effect of this substitution on the three-dimensional structure of this region of the protein, we have generated the allowed (low energy) conformations of the region of the GPI alpha protein containing residues 228-238 (with 5 residues on either side of the critical residue 233) with Gly 233 (wild type) and Val 233 (PT-vWD) using the computer program ECEPP (Empirical Conformational Energies of Peptides Program). The wild-type sequence is Tyr-Val-Trp-Lys-Gln-Gly-Val-Asp-Val-Lys-Ala. We find that the Gly 233-containing peptide can exist in two low energy conformers. The lowest energy conformer is a structure containing a beta-turn at Gln 232-Gly 233 while the alternative conformation is an amphipathic helical structure. Only the amphipathic helical structure is allowed for the Val 233-containing peptide which contains a hydrophobic 'face' consisting of Val 229, Val 233 and Val 236 and another hydrophilic surface composed of such residues as Lys 231 and Asp 235. No such surfaces exist for the lowest energy bend conformer for the Gly 233-containing peptide, but do exist in the higher energy helical structure. The amphipathic surfaces in the 228-238 region of the Val 233-containing GPIb alpha protein may associate strongly with complementary surfaces during vWF binding to the GPIb/IX receptor complex and may help explain heightened association of vWF with this receptor in PT-vWD.  相似文献   

11.
The 21-residue fragment Tyr-Gly-Ser-Thr-Ser-Gln-Glu-Val-Ala-Ser-Val-Lys-Gln-Ala-Phe-Asp-Ala-Val- Gly-Val-Lys, corresponding to sequence 296-316 of thermolysin and thus encompassing the COOH-terminal helical segment 301-312 of the native protein, was synthesized by solid-phase methods and purified to homogeneity by reverse-phase high performance liquid chromatography. The peptide 296-316 was then cleaved with trypsin at Lys307 and Staphylococcus aureus V8 protease at Glu302, producing the additional fragments 296-307, 308-316, 296-302, and 303-316. All these peptides, when dissolved in aqueous solution at neutral pH, are essentially structureless, as determined by circular dichroism (CD) measurements in the far-ultraviolet region. On the other hand, fragment 296-316, as well as some of its proteolytic fragments, acquires significant helical conformation when dissolved in aqueous trifluoroethanol or ethanol. In general, the peptides mostly encompassing the helical segment 301-312 in the native thermolysin show helical conformation in aqueous alcohol. In particular, quantitative analysis of CD data indicated that fragment 296-316 attains in 90% aqueous trifluoroethanol the same percentage (approximately 58%) of helical secondary structure of the corresponding chain segment in native thermolysin. These results indicate that peptide 296-316 and its subfragments are unable to fold into a stable native-like structure in aqueous solution, in agreement with predicted location and stabilities of isolated subdomains of the COOH-terminal domain of thermolysin based on buried surface area calculations of the molecule.  相似文献   

12.
We have previously reported on the differential regulation of the human δ-opioid receptor (hDOR) by alkaloid (etorphine) and peptidic (DPDPE and deltorphin I) ligands, in terms of both receptor desensitization and post-endocytic sorting. Since ßarrestins are well known to regulate G protein-coupled receptors (GPCRs) signaling and trafficking, we therefore investigated the role of ßarrestin1 (the only isoform expressed in our cellular model) in the context of the hDOR. We established clonal cell lines of SK-N-BE cells over-expressing ßarrestin1, its dominant negative mutant (ßarrestin1319-418), and shRNA directed against endogenous ßarrestin1. Interestingly, both binding and confocal microscopy approaches demonstrated that ßarrestin1 is required for hDOR endocytosis only when activated by etorphine. Conversely, functional experiments revealed that ßarrestin1 is exclusively involved in hDOR desensitization promoted by the peptides. Taken together, these results provide substantial evidence for a ßarrestin1-biased agonism at hDOR, where ßarrestin1 is differentially involved during receptor desensitization and endocytosis depending on the ligand.  相似文献   

13.
The effects of specific CaM kinase II inhibitors were investigated on Na(+) channels from rat cerebellar granule cells. A maximal effect of KN-62 was observed at 20 microM and consisted of an 80% reduction of the peak Na(+) current after only a 10-min application. A hyperpolarizing shift of 8 mV in the steady-state inactivation was also observed. KN-04 (20 microM), an inactive analog, had no detectable effect. KN-62 was however inactive on Na(+) currents recorded from Chinese hamster ovary cells expressing the type II A alpha subunit. We have also analyzed the inhibitory effects of CaM kinase II 296-311 and CaM kinase II 281-309 peptides. Both peptides (75 microM) induced a maximum peak Na(+) current reduction within 30 min. Under similar conditions, a truncated peptide CaM kinase II 284-302 was ineffective. These results demonstrate that CaM kinase II acts as a modulator of Na(+) channel activity in cerebellar granule cells.  相似文献   

14.
Dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2), dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2) and deltorphin I (Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2) are the first naturally occurring peptides highly potent for and almost specific to the mu- and delta-opioid receptors, respectively. The amino-terminal domains Tyr-D-X-Phe (where X is either Ala or Met) of these peptides behave as selective and potent mu-receptor ligands. Routing of Tyr-D-X-Phe to the delta- or the mu- receptor is associated with the presence or the absence at the C-terminus of an additional hydrophobic and negatively charged tetrapeptide by-passing the mu-addressing ability of the amino-terminal moiety. A study of 20 Tyr-D-X-Phe-Y-NH2 analogs with substitution of X and Y by neutral, hydrophobic, aromatic amino acids as well as by charged amino acid residues shows that tetrapeptides maintain high binding affinity and selectivity for the mu-opioid receptor. Although residue in position 4 serves a delta-address function, the tripeptide motif at the C-terminus of dermenkephalin and deltorphin I are critical components for high selectivity at delta-opioid receptor. Results demonstrate that mu- and delta-opioid receptors share topologically equivalent ligand-binding domains, or ligand-binding sequences similarities, that recognized Tyr-D-X-Phe as a consensus message-binding sequence. The delta-receptor additionally contains a unique address subsite at or near the conserved binding domain that accommodates the C-terminal tetrapeptide motif of dermenkephalin and deltorphin I.  相似文献   

15.
Comprehensive energy calculations were applied to four opioid-related peptides with different receptor selectivities, namely the delta-selective dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2, DRE), the mu-selective dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, DRM) and their "hybrid" peptides DRM/DRE (Tyr-D-Ala-Phe-Gly-Leu-Met-Asp-NH2) and DRE/DRM (Tyr-D-Met-Phe-His-Tyr-Pro-Ser-NH2). It was shown that the N-terminal tripeptide "mu-messages" in the delta-selective ligands DRE and DRM/DRE can possess similar low energy space arrangements of their functionally important elements (the N-terminal alpha-amino group and the aromatic moieties of Tyr and Phe), but that these are different from the space arrangement of these moieties in mu-selective DRM and DRE/DRM. These results suggest that the C-terminal tripeptide "delta-address" in DRE may influence the conformation of the "mu-message" in DRM. A refined model for the delta-receptor-bound conformation of DRE is proposed based on these calculations which is similar to that previously suggested for the cyclic delta-selective peptide [D-Pen2, D-Pen5]enkephalin (DPDPE). This model also has partial correspondence with the structure of the delta-selective alkaloid naltrindole.  相似文献   

16.
The pH dependence of the proton NMR spectrum of [Asn1, Val5] angiotensin II in aqueous solution shows the existence of one major and one minor conformation above pH 6.5, the minor conformation representing 12 +/- 2% of the total peptide. A similar observation has been made for (Asn1, Val5) angiotensin I and Val-Tyr-Val-His-Pro-Phe. This effect is not due to the presence of angiotensin-like impurities in the peptide samples. We have shown two expected impurities, [beta-Asp1, Val5] angiotensin II and [Asn1, 3-Bzl-Ty4, Val5] - angiotensin II, to be absent, and a third impurity [Asn1, Val5, D-His6] angiostensin II, to be present at less than or equal to 2.1 mol%, too little to account for the observed amount (12 +/- 2%) of minor conformation. The carbon-13 spectrum of the hexapeptide at high pH shows that the major conformation has Pro7 in the trans form and the minor conformation has Pro7 in the cis form.  相似文献   

17.
18.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1992,32(7):751-756
The kinetics of folding random coils of alpha alpha-tropomyson (Tm) subsequences to two-chain coiled coils was studied by stopped-flow CD. Subsequences studied were those comprising residues 11-127 (11Tm127), 142-281 (142Tm281), 1-189 (1Tm189), and 190-284 (190Tm284) of the parent 284-residue alpha-tropomyosin chain. Unlike the parent, subsequences 1Tm189 and 11Tm127 fold within the dead time of the instrument (less than 0.04 s). Like the parent, subsequences 142Tm281 and 190Tm284 fold in two phases. In the fast phase, 45% and 32%, respectively, of the equilibrium helical content form. In the time-resolvable, first-order slow phase (k-1 = 2.7 s at 20 degrees C for 142Tm281 and k-1 = 2.0 s at 15 degrees C for 190Tm284), the remaining structure forms. Neither reduced 142Tm281 nor 190Tm284 show any dependence of the rate on concentration, so chain association occurs in the fast phase. Like the parent 142Tm281 forms more helical content in the fast phase when cross-linked at C-190, and the remaining structure forms slowly with rate parameters similar to those of the reduced species. Comparison of the folding behavior of C- and N-terminal subsequences with that of the parent protein suggests that the slow phase in the parent is caused by a folding bottleneck somewhere nearer the C-terminus. However, rapid association and partial folding near the N-terminus is not necessary for prompt folding, since even 190Tm284 chains associate and partially fold very rapidly (less than 0.04 s), and then complete the folding in seconds.  相似文献   

19.
Local cardiac opioids appear to be important in determining the quality of vagal control of heart rate. Introduction of the endogenous opioid methionine-enkephalin-arginine-phenylalanine (MEAP) into the interstitium of the canine sinoatrial node by microdialysis attenuates vagally mediated bradycardia through a delta-opioid receptor mechanism. The following studies were conducted to test the hypothesis that a delta(2)-opiate receptor subtype mediates the interruption of vagal transmission. Twenty mongrel dogs were anesthetized and instrumented with microdialysis probes inserted into the sinoatrial node. Vagal frequency responses were performed at 1, 2, and 3 Hz during vehicle infusion and during treatment with the native agonist MEAP, the delta(1)-opioids 2-methyl-4aa-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha-octahydroquinolino[2,3,3- g]isoquinoline (TAN-67) and [d-pen(2,5)]-enkephalin (DPDPE), and the delta(2) opioid deltorphin II. The vagolytic effects of intranodal MEAP and deltorphin were then challenged with the delta(1)- and delta(2)-opioid receptor antagonists 7-benzylidenenaltrexone (BNTX) and naltriben, respectively. Although the positive control deltorphin II was clearly vagolytic in each experimental group, TAN-67 and DPDPE were vagolytically ineffective in the same animals. In contrast, TAN-67 improved vagal bradycardia by 30-35%. Naltriben completely reversed the vagolytic effects of MEAP and deltorphin. BNTX was ineffective in this regard but did reverse the vagal improvement observed with TAN-67. These data support the hypothesis that the vagolytic effect of the endogenous opioid MEAP was mediated by delta(2)-opioid receptors located in the sinoatrial node. These data also support the existence of vagotonic delta(1)-opioid receptors also in the sinoatrial node.  相似文献   

20.
The importance of the length and conjugation site of a protective epitope peptide (276SALLEDPVG284) from glycoprotein D of herpes simplex virus in branched polypeptide conjugates has been investigated. A new set of peptides, with a single attachment site and truncated sequences, was prepared. The immunogenicity of conjugates and the specificity of antibody responses elicited were investigated in BALB/c, C57/B1/6 and CBA mice. It was found that the covalent coupling of the peptide comprising the 276-284 sequence of gD through its Asp residue at position 281 did not influence the immunogenic properties of the epitope, while involvement of the side chain of Glu at position 280 almost completely abolished immunogenicity. These results clearly indicated that the conjugation site of the epitope peptide influenced the intensity and specificity of antibody responses. Comparison of the immunological properties of conjugates containing truncated gD peptides revealed the presence of two epitopes within the 276-284 region. One of the proposed epitopes is situated at the N-terminal (276-281) region, while the other is located at the C-terminal end of the sequence (279-284). Binding data demonstrated that some of the peptides comprising these epitopes induced gD-specific responses in their conjugated form and also elicited an immune response that conferred protection against lethal HSV-1 infection. The correlation of peptide- and gD-specific antibody responses with the protective effect of the immune response is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号