首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of muscle cells involves the action of myogenic determination factors. In this report, we show that human skeletal muscle tissue contains, besides the previously described Myf-5, two additional factors Myf-3 and Myf-4 which represent the human homologues of the rodent proteins MyoD1 and myogenin. The genes encoding Myf-3, Myf-4 and Myf-5 are located on human chromosomes 11, 1, and 12 respectively. Constitutive expression of a single factor is sufficient to convert mouse C3H 10T1/2 fibroblasts to phenotypically normal muscle cells. The myogenic conversion of 10T1/2 fibroblasts results in the activation of the endogenous MyoD1 and Myf-4 (myogenin) genes. This observation suggests that the expression of Myf proteins leads to positive autoregulation of the members of the Myf gene family. Individual myogenic colonies derived from MCA C115 cells (10T1/2 fibroblast transformed by methylcholanthrene) express various levels of endogenous MyoD1 mRNA ranging from nearly zero to high levels. The Myf-5 gene was generally not activated in 10T1/2 derived myogenic cell lines but was expressed in some MCA myoblasts. In primary human muscle cells Myf-3 and Myf-4 mRNA but very little Myf-5 mRNA is expressed. In mouse C2 and P2 muscle cell lines MyoD1 is abundantly synthesized together with myogenin. In contrast, the rat muscle lines L8 and L6 and the mouse BC3H1 cells express primarily myogenin and low levels of Myf-5 but no MyoD1. Myf-4 (myogenin) mRNA is present in all muscle cell lines at the onset of differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
T Braun  M A Rudnicki  H H Arnold  R Jaenisch 《Cell》1992,71(3):369-382
The Myf-5 gene, a member of the myogenic basic HLH factor family, has been inactivated in mice after homologous recombination in ES cells. Mice lacking Myf-5 were unable to breathe and died immediately after birth, owing to the absence of the major distal part of the ribs. Other skeletal abnormalities, except for complete ossification of the sternum, were not apparent. Histological examination of skeletal muscle from newborn mice revealed no morphological abnormalities. Northern blot analysis demonstrated normal levels of muscle-specific mRNAs including MyoD, myogenin, and Myf-6. However, the appearance of myotomal cells in early somites was delayed by several days. These results suggest that while Myf-5 plays a crucial role in the formation of lateral sclerotome derivatives, Myf-5 is dispensable for the development of skeletal muscle, perhaps because other members of the myogenic HLH family substitute for Myf-5 activity.  相似文献   

3.
4.
Targeted inactivation of the myogenic determination genes myf-5 and myoD in mice resulted in moderate (Myf-5) or no muscle phenotypes (MyoD) and double knock-out mutants lacking both genes failed to develop any skeletal muscle. In order to determine the mechanism of this apparent genetic redundancy we investigated the basis of functional overlap between the two genes. Here we demonstrate that Myf-5 and MyoD are not expressed within the same muscle precursor cell, but rather determine different muscle cell lineages arising from independently committed stem cell populations. Selective ablation of Myf-5-expressing muscle precursors from differentiating ES cells does not prevent Myo-D-dependent muscle differentiation. The early muscle progenitor cells which normally express Myf-5 do not develop into later appearing MyoD cells, even when the myf-5 gene has been inactivated. Thus skeletal musculature in vertebrates develops from two separate cell lineages and complementation may occur at the cellular level, but not between different myogenic factor genes within one cell.  相似文献   

5.
6.
7.
8.
9.
Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives--myogenin, Myf-5, and MRF4/herculin/Myf-6--are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Mounting evidence supports the notion that Myf-5 and MyoD play unique roles in the development of epaxial (originating in the dorso-medial half of the somite, e.g. back muscles) and hypaxial (originating in the ventro-lateral half of the somite, e.g. limb and body wall muscles) musculature. To further understand how Myf-5 and MyoD genes cooperate during skeletal muscle specification, we examined and compared the expression pattern of MyoD-lacZ (258/2.5lacZ and MD6.0-lacZ) transgenes in wild-type, Myf-5, and MyoD mutant embryos. We found that the delayed onset of muscle differentiation in the branchial arches, tongue, limbs, and diaphragm of MyoD-/- embryos was a consequence of a reduced ability of myogenic precursor cells to progress through their normal developmental program and not because of a defect in migration of muscle progenitor cells into these regions. We also found that myogenic precursor cells for back, intercostal, and abdominal wall musculature in Myf-54-/- embryos failed to undergo normal translocation or differentiation. By contrast, the myogenic precursors of intercostal and abdominal wall musculature in MyoD-/- embryos underwent normal translocation but failed to undergo timely differentiation. In conclusion, these observations strongly support the hypothesis that Myf-5 plays a unique role in the development of muscles arising after translocation of epithelial dermamyotome cells along the medial edge of the somite to the subjacent myotome (e.g., back or epaxial muscle) and that MyoD plays a unique role in the development of muscles arising from migratory precursor cells (e.g., limb and branchial arch muscles, tongue, and diaphragm). In addition, the expression pattern of MyoD-lacZ transgenes in the intercostal and abdominal wall muscles of Myf-5-/- and MyoD-/- embryos suggests that appropriate development of these muscles is dependent on both genes and, therefore, these muscles have a dual embryonic origin (epaxial and hypaxial).  相似文献   

17.
18.
Rat L6E9 muscle cells commit to terminal differentiation by forming a large muscle syncitia complete with the expression of a large number of muscle-specific contractile protein genes. To determine whether these cells, which fail to synthesize MLC (myosin light chain) 1 and cardiac alpha-actin, exhibit a deficiency in the expression of muscle determination genes, we measured expression of MyoD1, myogenin, Myf-5, and MRF-4. Results show these cells do not synthesize MyoD1, yet express the other myogenic determination genes. Transient expression of exogenous MyoD1 in these cells is sufficient to activate endogenous MLC 1 and cardiac alpha-actin mRNA synthesis during muscle differentiation. Previously undetected myosin heavy chain (MHC) isoforms (beta-MHC and perinatal MHC) are also transcribed at low levels in L6E9 muscle cells, and in MyoD1-transfected L6E9 cells no change occurs in their expression. Furthermore, treatment with the demethylating agent 5-azacytidine activates expression of the endogenous MyoD1 gene in L6E9 cells and, subsequently, rescues deficiencies in their myogenic biochemical program. These results demonstrate that the endogenous MyoD1 gene in L6E9 cells is not defective and can be functionally activated. Also, the MyoD1 protein plays an essential role, which cannot be compensated by other known muscle determination proteins, in the induction of MLC 1 and cardiac alpha-actin expression.  相似文献   

19.
Using Western blot analysis, we investigated whether the amount of myogenic regulatory factors differs in slow-type and fast-type muscles. In addition, we examined the adaptive response of myogenic regulatory factor protein in the overloaded rat muscles by the ablation of synergists, in the regenerating muscles following bupivacaine injection and in the denervated muscle. The amount of myogenin protein in the slow-type muscle was markedly greater. In contrast, the proteins MyoD and Myf-5 were selectively accumulated in the fast-type muscles. A gradual down-regulation of MyoD and Myf-5 proteins was detected in the denervated fast-type muscles, but not in the myogenin protein content. A rapid down-regulation of myogenic regulatory factor protein was observed both of the mechanically overloaded and in the regenerating muscles. These results indicate that the fast-type-specific gene expression in muscle is modulated by MyoD and Myf-5 proteins and suggest that myogenin protein plays an important role in the reconstruction of damaged neuromuscular connections.  相似文献   

20.
Transcriptional mechanisms regulating MyoD expression in the mouse   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号