首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
14-3-3 proteins are known to play a pivotal role in cell survival, apoptosis and signal transduction. The 14-3-3ζ isoform has been cloned and characterized from many eukaryotic organisms, including the fruit fly and silkworm. However, no study on mosquito 14-3-3 has been reported to date. In an attempt to investigate the function of 14-3-3 in midgut epithelial cells undergoing apoptosis, a cDNA library was generated from the malaria vector, Anopheles sinensis , which was treated with apoptosis-inducing Actinomycin-D. We were able to identify and obtain A. sinensis 14-3-3ζ cDNA ( Ansi14-3-3ζ ) from expressed sequence tags (EST) analysis after conducting massive sequencing of the A. sinensis cDNA library. Ansi14-3-3ζ has very high homology to 14-3-3 homologs of various insects, such as Anopheles gambiae (100%), Aedes aegypti (100%), Drosophila melanogaster (96%), Bombyx mori (93%), Apis mellifera (93%) and Mus musculus (81%), indicating that mosquito 14-3-3ζ is a highly conserved gene in diverse organisms. Analysis of temporal expression patterns showed that Ansi14-3-3ζ mRNA is highly expressed in egg, early pupae and adult stages and is also expressed, although at low levels, in fourth instar larvae and late pupae. In response to two immune elicitors (lipopolysaccharide and laminarin), no striking induction of 14-3-3ζ mRNA was observed in A. sinensis . Further studies of the precise biological function, inducibility and subcellular distribution of 14-3-3ζ are required in Plasmodium invasion-induced apoptotic midgut cells in A. sinensis in the context of the Time Bomb model.  相似文献   

2.
3.
A polyclonal antibody was raised against a Toxoplasma gondii 14-3-3-gluthatione S-transferase fusion protein obtained by cloning a 14-3-3 cDNA sequence determined from the T. gondii database. This antibody specifically recognized T. gondii 14-3-3 without any cross-reaction with mammalian proteins. Immunofluorescence microscopy studies of the tachyzoites or the T. gondii-infected cells suggested cytosolic and membranous localizations of 14-3-3 protein. Different subcellular fractions were prepared for electrophoresis analysis and immunodetection. 14-3-3 proteins were found in the cytosol, the membrane fraction and Triton X-100-resistant membranes. Two 14-3-3 isoforms were detected. The major one was mainly cytoplasmic and to a lesser extent membrane-associated, whereas the minor isoform was associated with the detergent-resistant lipid rafts.  相似文献   

4.
Abstract: The 14-3-3 protein family, which is present at particularly high concentrations in mammalian brain, is known to be involved in various cellular functions, including protein kinase C regulation and exocytosis. Despite the fact that most of the 14-3-3 proteins are cytosolic, a small but significant proportion of 14-3-3 in brain is tightly and selectively associated with some membranes. Using a panel of isoform-specific antisera we find that the ε, η, γ, β, and ζ isoforms are all present in purified synaptic membranes but absent from mitochondrial and myelin membranes. In addition, the η, ε, and γ isoforms but not the β and ζ isoforms are associated with isolated synaptic junctions. When different populations of synaptosomes were fractionated by a nonequilibrium Percoll gradient procedure, the ε and γ isoforms were present and the β and ζ isoforms were absent from the membranes of synaptosomes sedimenting in the more dense parts of the gradient. The finding that these proteins are associated with different populations of synaptic membranes suggests that they are selectively expressed in different classes of neurones and raises the possibility that some or all of them may influence neurotransmission by regulating exocytosis and/or phosphorylation.  相似文献   

5.
About thirty years after the initial identification of 14-3-3 proteins in mammalian brain, they are now thought to be ubiquitous among eukaryotes. We identified five cDNAs encoding 14-3-3 proteins of Nicotiana tabacum L. using a polymerase chain reaction (PCR)-based screening strategy. A phylogenetic analysis was carried out with 14-3-3 amino-acid sequences from twelve plant species. The results showed that 14-3-3 proteins of plants can be divided into at least five different subgroups. Four of these subgroups resulted from early gene duplication events that happened prior to the speciation of most of the plant species considered. Interestingly, 14-3-3 epsilon isoforms from mammals and insects form one subgroup together with epsilon-like isoforms from plants. The 14-3-3 genes known from monocots descend from the same ancestor, forming the fifth subgroup. Received: 30 June 1997 / Accepted: 29 August 1997  相似文献   

6.
We reported previously that adenocarcinoma-reactive human monoclonal antibody AE6F4, which had been generated by in vitro immunization method, recognizes both 14-3-3protein and cytokeratin 8 (CK8). In this study, to analyze the cross-reactivity of AE6F4 antibody, epitopes of AE6F4 antibody on 14-3-3 proteins and CK8 were studied by using synthetic linear peptide scanning technology. To determine the locations of B cell epitope, 48 and 95 of decapeptides covering the entire 14-3-3 proteins and CK8, respectively,were synthesized and binding to AE6F4 antibody was examined by ELISA. The AE6F4 antibody was strongly reactive to peptides containing amino acid sequences TLWTSDTQGD in 14-3-3 proteins and INFLRQLYEE in CK8. These results indicate that AE6F4 antibody can recognize the different peptide sequences in 14-3-3 proteins and CK8. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1′ insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal α-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.  相似文献   

8.
Cyclin-dependent kinase 11 isoforms (CDK11) are members of the p34(cdc2) superfamily. They have been shown to play a role in RNA processing and apoptosis. In the present study, we investigate whether CDK11 interacts with 14-3-3 proteins. Our study shows that the putative 14-3-3 binding site (113-RHRSHS-118) within the N-terminal domain of CDK11(p110) is functional. Endogenous CDK11(p110) binds directly to 14-3-3 proteins and phosphorylation of the serine 118 within the RHRSHS motif seems to be required for the binding. Besides, CDK11(p110) is capable of interacting with several different isoforms of 14-3-3 proteins both in vitro and in vivo. The interaction of 14-3-3 gamma with CDK11(p110) occurs throughout the entire cell cycle and reaches maximum at the G2/M phase. Interestingly, 14-3-3 gamma shows strong interaction with N-terminal portion of caspase-cleaved CDK11(p110) (CDK11(p60)) product at 48 h after Fas treatment, which correlates with the maximal cleavage level of CDK11(p110) and the maximum activation level of CDK11 kinase activity during apoptosis. Collectively, these results suggest that CDK11 kinases could be regulated by interaction with 14-3-3 proteins during cell cycle and apoptosis.  相似文献   

9.
10.
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3–binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.  相似文献   

11.
PCTAIRE-1 is a member of the cyclin-dependent kinase (cdk)-like class of proteins, and is localized mainly in the mammalian brain. Using the yeast two-hybrid system we screened a mouse brain cDNA library with PCTAIRE-1 as bait, and isolated several clones coding for the mouse homologs of the following proteins: p11 (also known as calpactin I light chain) and the η, θ (also known asτ) and ζ isoforms of 14-3-3 proteins. We confirmed that these four proteins interact with PCTAIRE-1 by demonstrating the biochemical interactions using the pure recombinant proteins. The fact that 14-3-3 proteins are known to interact with many other intracellular proteins (such as C-kinase, Raf, Bcr, PI3-kinase) and p11 with annexin II (a major pp60v-src and C-kinase substrate) suggests that PCTAIRE-1 might be part of multiple signal transduction cascades and cellular protein networks. Received: 23 September 1996 / Accepted: 10 January 1997  相似文献   

12.
Dimeric 14-3-3 proteins exert diverse functions in eukaryotes by binding to specific phosphorylated sites on diverse target proteins. Critical to the physiological function of 14-3-3 proteins is the wide range of binding affinity to different ligands. The existing information of binding affinity is mainly derived from nonhomogeneous-based methods such as surface plasmon resonance and quantitative affinity precipitation. We have developed a fluorescence anisotropy peptide probe using a genetically isolated 14-3-3-binding SWTY motif. The synthetic 5-(and-6)-carboxyfluorescein(FAM)-RGRSWpTY-COOH peptide, when bound to 14-3-3 proteins, exhibits a seven-fold increase in fluorescence anisotropy. Different from the existing assays for 14-3-3 binding, this homogeneous assay tests the interaction directly in solution. Hence it permits more accurate determination of the dissociation constants of 14-3-3 binding molecules. Protocols for a simple mix-and-read format have been developed to evaluate 14-3-3 protein interactions using either purified recombinant 14-3-3 fusion proteins or native 14-3-3s in crude cell lysate. Optimal assay conditions for high-throughput screening for modulators of 14-3-3 binding have been determined.  相似文献   

13.
Targeted gene disruption studies have established that the c-Jun NH2-terminal kinase (JNK) is required for the stress-induced release of mitochondrial cytochrome c and apoptosis, and that the Bax subfamily of Bcl-2-related proteins is essential for JNK-dependent apoptosis. However, the mechanism by which JNK regulates Bax has remained unsolved. Here we demonstrate that activated JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3, a cytoplasmic anchor of Bax. Phosphorylation of 14-3-3 led to dissociation of Bax from this protein. Expression of phosphorylation-defective mutants of 14-3-3 blocked JNK-induced Bax translocation to mitochondria, cytochrome c release and apoptosis. Collectively, these results have revealed a key mechanism of Bax regulation in stress-induced apoptosis.  相似文献   

14.
Abstract: A protein has been purified from human brain that appears to be the human equivalent of bovine 14-3-3 protein. On polyacrylamide gel electrophoresis the protein migrates as a faster major component, termed 14-3-3-2 protein, and a slower minor component, termed 14-3-3-1 protein, which consists of approximately 12% of the total protein. Both 14-3-3-1 and 14-3-3-2 have a native molecular weight of approximately 67,000. 14-3-3-2 appears to have the subunit composition (αβ; 14-3-3-1 has the composition ββ. Peptide mapping with Stuphvlococcus aureus V8 proteinase shows that α and β subunits are unrelated but the β and β' subunits show some common peptides. Immunoperoxidase labelling shows that 14-3-3 is localised in neurones in the human cerebral cortex. 14-3-3 shows no enolase, creatine kinase, triose phosphate isomerase, ATPase, cyclic nucleotide-dependent protein kinase, or purine nucleoside phosphorylase activity. 14-3-3 does not bind calcium and does not appear to be related to calmodulin, calcineurin, tubulin, neurofilament proteins, clathrin-associated proteins, or tropomyosin. The functional significance of this neuronal protein remains obscure.  相似文献   

15.
Plants and protozoa contain a unique family of calcium-dependent protein kinases (CDPKs) which are defined by the presence of a carboxyl-terminal calmodulin-like regulatory domain. We present biochemical evidence indicating that at least one member of this kinase family can be stimulated by 14-3-3 proteins. Isoform CPK-1 from the model plant Arabidopsis thaliana was expressed as a fusion protein in E. coli and purified. The calcium-dependent activity of this recombinant CPK-1 was shown to be stimulated almost twofold by three different 14-3-3 isoforms with 50% activation around 200 nM. 14-3-3 proteins bound to the purified CPK-1, as shown by binding assays in which either the 14-3-3 or CPK-1 were immobilized on a matrix. Both the 14-3-3 binding and activation of CPK-1 were specifically disrupted by a known 14-3-3 binding peptide LSQRQRSTpSTPNVHMV (IC50=30 μM). These results raise the question of whether 14-3-3 can modulate the activity of CDPK signal transduction pathways in plants.  相似文献   

16.
The 14‐3‐3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14‐3‐3 proteins are scaffold molecules that form homo‐ or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation‐dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14‐3‐3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix‐forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to ? and ζ isoforms (Aeae14‐3‐3ε and Aeae14‐3‐3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14‐3‐3ζ except in the midgut and ovaries of adult females. The 14‐3‐3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.  相似文献   

17.
The eukaryotic regulatory protein 14-3-3 is involved in many important plant cellular processes including regulation of nitrate assimilation through inhibition of phosphorylated nitrate reductase (pNR) in darkened leaves. Divalent metal cations (Me2+) and some polyamines interact with the loop 8 region of the 14-3-3 proteins and allow them to bind and inhibit pNR in vitro. The role of the highly variant C-terminal regions of the 14-3-3 isoforms in regulation by polycations is not clear. In this study, we carried out structural analyses on the C-terminal tail of the Arabidopsis 14-3-3omega isoform and evaluated its contributions to the inhibition of pNR. Nested C-terminal truncations of the recombinant 14-3-3omega protein revealed that the removal of the C-terminal tail renders the protein partially Mg2+-independent in both pNR binding and inhibition of activity, suggesting that the C-terminus functions as an autoinhibitor. The C-terminus of 14-3-3omega appears to undergo a conformational change in the presence of polycations as demonstrated by its increased trypsin cleavage at Lys-247. C-terminal truncation of 14-3-3omega at Thr-255 increased its interaction with antibodies to the C-terminus of 14-3-3omega in non-denaturing conditions, but not in denaturing conditions, suggesting that the C-terminal tail contains ordered structures that might be disrupted by the truncation. Circular dichroism (CD) analysis of a C-terminal peptide, from Trp-234 to Lys-249, revealed that the C-terminal tail might contain a tenth alpha-helix, in agreement with the in silico predictions. The function of the putative tenth alpha-helix is not clear because substituting two prolyl residues within the predicted helix (E245P/I246P mutant), which prevented the corresponding peptide from adopting a helical conformation, did not affect the inhibition of pNR activity in the presence or absence of Mg2+. We propose that in the absence of polycations, access of target proteins to their binding groove in the 14-3-3 protein is restricted by the C-terminus, which acts as part of a gate that opens with the binding of polycations to loop 8.  相似文献   

18.
14-3-3蛋白家族是由多个高度保守的成员构成的调节性蛋白质家族,它们主要以磷酸化的形式与伴侣蛋白相互作用,并能够以多种方式来影响靶蛋白。通过构建14-3-3蛋白原核表达载体,纯化重组蛋白获得14-3-3蛋白抗体。为了验证14-3-3蛋白基因在耐铝中的作用,构建14-3-3酵母表达载体,得到14-3-3过表达酵母菌株。在5mmol/L铝浓度下,转基因酵母比对照酵母长势好,这表明14-3-3蛋白通过促进生长赋予酵母对铝胁迫的耐受性。  相似文献   

19.
The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 epsilon, gamma, and zeta as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS(680)SP, by phosphatase treatment, and by competition with the Ser(680)-phosphorylated RSYS(680)SP peptide. Metabolic labeling with [(32)P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser(680) is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser(680) in a phosphorylation-dependent manner. The mutation at Ser(680) led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3epsilon inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser(680) and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.  相似文献   

20.
14-3-3 proteins in neurological disorders   总被引:1,自引:0,他引:1  
14-3-3 proteins were originally discovered as a family of proteins that are highly expressed in the brain. Through interactions with a multitude of binding partners, 14-3-3 proteins impact many aspects of brain function including neural signaling, neuronal development and neuroprotection. Although much remains to be learned and understood, 14-3-3 proteins have been implicated in a variety of neurological disorders based on evidence from both clinical and laboratory studies. Here we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins in both neurodegenerative and neuropsychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号