首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The tripeptide Bz-Arg-Gly-Asp(NH2)OH was synthesized by a combination of chemical and enzymatic methods in this study. Firstly, Gly-Asp-(NH2)2 was synthesized by a novel chemical method in three steps including chloroacetylation of l-aspartic acid, esterification of chloroacetyl l-aspartic acid and ammonolysis of chloroacetyl l-aspartic acid diethyl ester. Secondly, the linkage of the third amino acid (Bz-Arg-OEt) to Gly-Asp-(NH2)2 was completed by enzymatic method under kinetic control condition. An industrial alkaline protease alcalase was used in water–organic cosolvents systems. The synthesis reaction conditions were optimized by examining the effects of several factors including water content, temperature, pH and reaction time on the yield of the synthesis product Bz-Arg-Gly-Asp(NH2)OH. The optimum conditions are pH 8.0, 35 °C, in ethanol/Tris–HCl buffer system (85:15, v/v), 8 h with the tripeptide yield of 73.6%.  相似文献   

2.
The bovine trypsin-catalyzed synthesis of N-alpha-benzoyl-DL-arginine esters from N-benzoyl-DL-arginine were studied in various organic solvents. Trypsin was immobilized to polyvinyl alcohol (PVA) by adsorption from its aqueous solutions. Immobilized enzyme showed higher catalytic activities than free enzyme for amino acid esterification in ethanol. The yield of ester is strongly dependent upon the PVA/trypsin ratio and water content in the reaction medium. The rate and equilibrium constant of the ester formation reaction are also dependent on water content.  相似文献   

3.
Transesterification of waste cooking oil with high acid value and high water contents using heteropolyacid H3PW12O40 x 6H2O (PW12) as catalyst was investigated. The hexahydrate form of PW(12) was found to be the most promising catalyst which exhibited highest ester yield 87% for transesterification of waste cooking oil and ester yield 97% for esterification of long-chain palmitic acid, respectively. The PW12 acid catalyst shows higher activity under the optimized reaction conditions compared with conventional homogeneous catalyst sulfuric acid, and can easily be separated from the products by distillation of the excess methanol and can be reused more times. The most important feature of this catalyst is that the catalytic activity is not affected by the content of free fatty acids (FFAs) and the content of water in the waste cooking oil and the transesterification can occur at a lower temperature (65 degrees C), a lower methanol oil ratio (70:1) and be finished within a shorter time. The results illustrate that PW12 acid is an excellent water-tolerant and environmentally benign acid catalyst for production of biodiesel from waste cooking oil.  相似文献   

4.
Adsorption and desorption isotherms of two commercial enzyme preparations of papain and bromelain were determined with a Dynamic Vapor System. The Guggenheim-Anderson-deBoer (GAB) modeling of the obtained sorption isotherms allowed the definition of different levels of hydration of those samples. Afterward, these enzyme preparations were used as biocatalysts in water and solvent-free esterification and alcoholysis reactions. The evolution of the obtained fatty acid ester level as a function of the initial hydration level of the biocatalyst, i.e., thermodynamic water activity (a(w)) and water content, was studied. The results show an important correlation between the initial hydration level of the biocatalyst and its catalytic activity during the lipase-catalyzed synthesis reactions. Thus, the Carica papaya lipase (crude papain preparation) catalytic activity is highly dependent on the biocatalyst hydration state. The optimized synthesis reaction yield is obtained when the a(w) value of the enzyme preparation is stabilized at 0.22, which corresponds to 2% water content. This optimal level of hydration occurs on the linear part of the biocatalyst's sorption isotherm, where the water molecules can form a mono- or multiple layer with the protein network. The synthesis reaction yield decreases when the a(w) of the preparation is higher than 0.22, because the excess water molecules modify the system equilibrium leading to the reverse and competitive reaction, i.e., hydrolysis. These results show also that an optimal storage condition for the highly hydrophilic crude papain preparation is a relative humidity strictly lower than 70% to avoid an irreversible structural transition leading to a useless biocatalyst. Concerning the bromelain preparation, no effect of the hydration level on the catalytic activity during esterification reactions was observed. This biocatalyst has too weak a catalytic activity which makes it difficult to observe any differences. Furthermore, the bromelain preparation is far more hydrophobic as it adsorbs only 18 g of water per 100 g of dry material at a(w) around 0.90. No deliquescence of this enzymatic preparation is observed at this a(w) value.  相似文献   

5.
The enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol, using immobilized lipases (Lipozyme IM 20 and Novozym 435), was investigated in selected organic solvent media. Novozym 435 was found to be more efficient for catalyzing the esterification reaction. The highest enzymatic activity of 0.89 μmol esterified linoleyl alcohol/g solid enzyme/min was obtained in a hexane/2-butanone mixture of 75:25 (v/v), with an esterification yield of 75%; however, an increase in the 2-butanone proportion in the mixture up to 50% (v/v) resulted in a decrease in enzymatic activity and esterification yield to 0.38 μmol esterified linoleyl alcohol/g solid enzyme/min and 40%, respectively. The maximum esterification yield of 99.3% was obtained with a dihydrocaffeic acid to linoleyl alcohol ratio of 1:8. The electrospray ionization-mass spectroscopic structural analysis of the end products confirmed the biosynthesis of dihydrocaffeic acid ester of linoleyl alcohol, which demonstrated an anti-radical activity using 2,2-diphenyl-1-picrylhydrazyl as a radical model.  相似文献   

6.
alpha-Chymotrypsin (CT), subtilisin BPN' (STB), and subtilisin Carlsberg (STC) were immobilized by adsorption to porous chitosan beads (Chitopearl, CP). The immobilized enzymes showed higher catalytic activities than free enzymes for amino acid esterification in many hydrophilic organic solvents except for methanol and DMF. In ethanol, the initial rate of the esterification increased with water content, whereas in ethyl acetate, the maximum rate was obtained at 2%-3% water. CP-immobilized CT also catalysed transesterification of Ac-Tyr-OMe in ethanol and peptide synthesis in acetonitrile from Ac-Tyr-OH or its ethyl ester and amino acid amides. The immobilized enzymes are highly stable in organic solutions, and can easily be separated from the reaction solutions. Repeated esterifications of Ac-Tyr-OH in acetonitrile by a CP-immobilized CT gave almost constant yields of the ester for more than 3 weeks.  相似文献   

7.
Enzymatic synthesis of l-ascorbyl linoleate in organic media   总被引:1,自引:0,他引:1  
A novel l-ascorbyl fatty acid ester, l-ascorbyl linoleate was successfully prepared by enzymatic esterification and transesterification in a non-aqueous medium using immobilized lipase as biocatalyst. Changes in enzymatic activity and product yield were studied for the following variable: the nature of the fatty acid, the fatty acid concentration and water content. The yield of synthesis for the C18 unsaturated fatty acids were higher than for the C18 saturated fatty acid. Initial enzyme concentration does not affect the equilibrium of the reaction. And the product yield (33.5%) in the transesterification was higher than that of the esterification (21.8%) at a high-substrate concentration 0.3 M. The medium water content was found to have a distinct influence on the l-ascorbyl linoleate synthesis.These authors contributed equally to the article.  相似文献   

8.
The peptide synthesis from N-acetyl-L-tyrosine ethyl ester and amino acid amides was realized using α-chymotrypsin as a catalyst in ethanol or acetonitrile containing small amounts of water. In these reaction systems, the precipitates of phosphate salt, which was used as a component of buffer solution, are considered to act as carriers of chymotrypsin. It was found that peptide formation is competitive with hydrolysis of the substrate ester, but the secondary synthesis of the peptide from the hydrolysate was also considered to proceed. The yield of the peptide after 24 h reaction was strongly dependent on the water concentration; maximum yields of the peptide were obtained at water concentrations below 10% (v/v). The addition of tertiary amines, such as triethyl amine, markedly increased the peptide yield, probably due to the increase in the concentration of the nucleophilic amine components by neutralization of hydrohalides of amino acid amides. The effect of reaction temperature and the reactions with CT immobilized on PVA, chitosan, or TEAE-cellulose are also described.  相似文献   

9.
在浸润条件下,以0.5%(v/v)戊二醛交联的高分子膜尼龙载体固定化木瓜蛋白酶。对固定化条件进行了优化,比较了固定化酶与游离酶的酶学参数。结果表明,4℃、pH6.0条件下,将膜载体浸润于2mg/mL酶液中5h,固定化酶活为303.4U/g。固定化酶最适反应pH为6.0~7.0,最适反应温度为65℃。其pH稳定性、热稳定性均比游离酶高。  相似文献   

10.
Feng Y  Zhang A  Li J  He B 《Bioresource technology》2011,102(3):3607-3609
Continuous esterification of free fatty acids (FFA) from acidified oil with methanol was carried out with NKC-9 cation-exchange resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height, 0.62 ml/min feed flow rate and 65°C reaction temperature, showing a much high conversion and operational stability. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin shows the potential commercial applications to esterification of FFA.  相似文献   

11.
The tripeptide BzArgGlyAsp(NH(2))(2) was synthesized by a combination of chemical and enzymatic methods in this study. First of all, GlyAsp(NH(2))(2) was synthesized by a novel chemical method in three steps including chloroacetylation of L-aspartic acid, esterification of chloroacetyl L-aspartic acid and ammonolysis of chloroacetyl L-aspartic acid diethyl ester. Secondly, kinetically controlled synthesis of BzArgGlyAsp(NH(2))(2) catalyzed by trypsin in organic solvent was conducted. The optimum conditions are pH 8.0, 30 degrees C in ethanol/Tris-HCl buffer system (85:15, v/v) for 80 min in the maximum yield of 74.4%.  相似文献   

12.
A proteinase isolated from Thermus RT41a was immobilized to controlled pore glass beads and was used in the free and immobilized forms for peptide synthesis. The observed maximum yield was the same in both cases. a number of dipeptides were produced from amino acid esters and amides. The best acyl components, from those tested, were found to be Ac-Phe-OEt and Bz-Ala-OMe. Tur-NH(2), Trp-NH(2), Leu-pNA, and Val-pNA were all reactive nucleophiles.The kinetically controlled synthesis of Bz-ala-Tyr-NH(2) was optimized by studying the effect of pH, temperature, solvent concentration, ionic strength, and nucleophile and acyl donor concentration, ionic strength, and nucleophile and acyl donor concentration on the maximum yield. The initial conditions used were 25 mM Bz-ala-OMe, 25 mM Tyr-NH(2), 70 degrees C, pH 8.0, and 10% v/v dimethylformamide (DMF). The optimum conditions were 90% v/v DMF using 80 mM bz-Ala-OMe and 615 mM Tyr-NH(2) at 40 degrees C and pH 10. These conditions increased the maximum conversion from 0.75% to 26% (of the original ester concentration). In a number of other cosolvents, the best peptide yields were observed with acetonitrile and ethyl acetate. In 90% acetonitrile similar yields were observed to those in 90% DMF under optimized conditions except that the acyl donor and nucleophile concentrations could be reduced to 25 mM and 100mM, respectively. The effect of the blocking group on the nucleophile was also investigated; -betaNA and -pNA as blocking groups improved the yields markedly. The blocking and leaving groups of the acyldonor had no effect on the dipeptide yield. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
The feasibility of using native lipase A from Candida antarctica (CAL-A) to esterify fatty acids with water-insoluble alcohols in the presence of excess water was investigated in stirred-tank reactors. For high reaction rates, a ratio of water:substrates of 0.6-1.4:1 (v/v) was required. CAL-A showed higher substrate selectivity for the esterification of saturated palmitic acid with branched-chain 2-ethyl-1-hexanol than for unsaturated oleic acid with linear alcohol (1-decanol). After 18 h at 70 °C in a 1.5 l bulk stirred-tank reactor, an 2-ethyl-1-hexyl palmitic acid ester was obtained near 100 % yield [molar ratio palmitic acid:2-ethyl-1-hexanol ~1:1.25, with 1.11 % (w/w) Novocor ADL (based on palmitic acid weight)].  相似文献   

14.

Earlier studies on fructose laurate ester products have shown that recombinant Pichia pastoris displaying Candida antarctica lipase B (CALB) on the cell surface acts as an efficient whole-cell biocatalyst for sugar ester production from fructose and lauric acid in an organic solvent. The effects of various reaction factors, including solvent composition, substrate molar ratio, enzyme dose, temperature and water activity, on esterification catalyzed by the CALB-displaying P. pastoris whole-cell biocatalyst were examined in the present study. Under the preferred reaction conditions, specifically, 5 mL organic solvent mixture of 2-methyl-2-butanol/DMSO (20% v/v), 2 mmol fructose with a lauric acid to fructose molar ratio of 2:1, 0.3 g whole-cell biocatalyst (1,264 U/g dry cell) with an initial water activity of 0.11, 1.2 g 4Å molecular sieve, reaction temperature of 55oC and 200 rpm stirring speed, the fructose mono laurate ester yield was 78% (w/w). The CALBdisplaying P. pastoris whole-cell biocatalyst exhibited good operational stability, with an evident increase, rather than decrease, in relative activity after the continuous recover and reuse cycle. The relative activity of the biocatalyst remained 50% higher than that of the first batch, even following reuse for 15 batches. Our results collectively indicate that the CALB-displaying P. pastoris whole-cell biocatalyst may be potentially utilized in lieu of free or immobilized enzyme to effectively produce non-ionic surfactants such as fatty acid sugar esters, offering the significant advantages of cost-effectiveness, good operational stability and mild reaction conditions.

  相似文献   

15.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. The lipase Novozym 435 (Novo Nordisk, A/S) from Candida antarctica was used to catalyze this reaction. The main factors influencing the degree of esterification and triglyceride yield were the amount of enzyme, water content, temperature and glycerol/fatty acid ratio. The optimum reaction conditions were established as: 100 mg of lipase; 9 ml hexane; 50°C; glycerol/PUFA concentrate molar ratio 1.2:3; 0% initial water; 1 g molecular sieves added at the start of reaction; and an agitation rate of 200 rpm. Under these conditions, a triglyceride yield of 93.5% was obtained from cod liver oil PUFA concentrate; the product contained 25.7% eicosapentaenoic acid and 44.7% docosahexaenoic acid. These optimized conditions were used to study esterification from a PUFA concentrate of the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. With the first, a triglyceride yield of 96.5%, without monoglycerides and very few diglycerides, was obtained after 72 h of reaction; the resulting triglycerides had 42.5% eicosapentaenoic acid. A triglyceride yield of 89.3% was obtained from a P. cruentum PUFA concentrate at 96 h of reaction, which contained 43.4% arachidonic acid and 45.6% EPA. These high triglyceride yields were also achieved when the esterification reaction was scaled up 5-fold.  相似文献   

16.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

17.
Immobilized chymotrypsin catalyzes esterification of N-acetyltyrosine in a medium containing high concentrations of alcohols. The hydrophilic support and inclusion of glycerol protect the enzyme activity and allow catalysis to proceed in the presence of only 10% (v/v) water. The same equilibrium concentration of ester is obtained whether reaction proceeds from ester or from free acid. Hates of ester synthesis and hydrolysis are similar when measured under the same conditions, but are at least one order of magnitude slower than optimal rates of hydrolysis. Subtilisin Carlsberg in the free, unmodified form catalyzes ester synthesis at even lower water concentrations; optimal rates are obtained at 5–15% H2O. Hydrolytic enzymes can thus be utilized as catalysts of synthesis reactions in nonaqueous solvents where synthesis is thermodynamically favored over hydrolysis; in some cases this may provide economic and/or energetic advantages over conventional techniques.  相似文献   

18.
《Process Biochemistry》2007,42(11):1481-1485
Whole cell Rhizopus oryzae (R. oryzae) IFO4697 immobilized within biomass support particles (BSPs) was used as catalyst for biodiesel production in tert-butanol, in which the stability of the catalyst could be enhanced significantly. Different feedstocks (refined, crude and acidified rapeseed oils) were adopted further for biodiesel production in tert-butanol system and it was found that when acidified rapeseed oil was used as feedstocks, the reaction rate and final methyl ester (ME) yield were significantly higher than that of refined and crude rapeseed oil. Major differences among the aforementioned oils were found to be the contents of free fatty acid (FFA), water and phospholipids, which showed varied influences on whole cell mediated methanolysis for biodiesel production. The reaction rate increased with the increase of free fatty acid content in oils; water content had varied influence on reaction rate and biodiesel yield; using adsorbent to remove excessive water could increase biodiesel yield significantly (from 73 to 84%); it was also found interestingly that phospholipids contained in oils could increase the reaction rate to a certain extent.  相似文献   

19.
Peptide synthesis catalyzed by papain at alkaline pH values   总被引:1,自引:0,他引:1  
The synthesis of peptides in the presence of papain at pH 8-9.5 is described. Starting substances are acylamino acid alkyl esters (the carboxyl component) and amides or tert.-butylesters of amino acids, as well as peptide (the amino component). Under such conditions secondary hydrolysis is not essential, making the synthesis of peptides soluble in aqueous medium. The yield of peptides is 50-94%. The effect of different factors (temperature, solvents, reagent concentrations) on the result of the reaction has been studied. It has been found that an excess of the carboxyl component is expedient to increase the yield of peptides.  相似文献   

20.
Abstract

Salicylic acid (SA) treatment reduces the damaging action by water deficit on growth and accelerates a restoration of growth processes. The aim of the present work was to study the physiological and biochemical alteration induced by SA in lemongrass plants under stress conditions. Therefore, a pot culture experiment was conducted to test whether SA application at concentration of (10?5 M) through foliar spray could protect lemongrass (Cymbopogon flexuosus Steud. Wats.) varieties (Neema and Krishna), subjected to drought stress on the basis of growth parameters and biochemical constituents, proline metabolism and quality attributes including citral content. The treatments were as follows: (i) 100% FC + 0 SA; (ii) 75% FC + 0 SA; (iii) 50% FC + 0 SA; (iv) 75% FC + 10?5 M SA; and (v) 50% FC + 10?5 M SA. The growth parameters were significantly reduced under the applied water stress levels; however, foliar application of salicylic acid (10?5 M) improved the growth parameters in stress-affected plants. The plants under water stress exhibited a significant increase in activities of nitrate reductase and carbonic anhydrase, and electrolyte leakage, proline content, free amino acid and in PEP carboxylase activity. Content and yield of essential oil also significantly decreased in plants that faced water stress. Thus, it was concluded that variety Neema is the more tolerant variety as compared to Krishna on the basis of content and oil yield and well adapted to drought stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号