首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

2.
ADP-ribosylation of pancreatic histone H1 and of other histones   总被引:2,自引:0,他引:2  
Incubation of pancreatic nuclei with high NAD concentrations resulted in increased ADP-ribosylation of histone H1. Interaction of [3H]ADP-ribosylated histone H1 with chromatin was significantly different from unmodified histone H1. The presence of a protein which is eluted at a lower salt concentration and which is ADP-ribosylated was also noticed. Pancreatic histones were isolated by column chromatography and their degree of ADP-ribosylation evaluated both by gel electrophoresis and by chromatography: histone H1 was the main acceptor while the core histones H3, H2B, and H2A were lightly labelled. Histones H1 and H1(0) have a differential binding to pancreatic chromatin and histone H1(0) is not ADP-ribosylated.  相似文献   

3.
ADP-ribosylation in permeable HeLa S3 cells   总被引:2,自引:0,他引:2  
ADP-ribosylation in permeabilized metaphase and interphase cells using [32P]NAD at pH 8.0 have been compared. Incorporation into trichloroacetic acid insoluble material was 4-5-times greater in metaphase cells. 17-22% was in the soluble fraction which contained material released from the cells, 16-22% in the 0.2 M HCl extract (histones) of the cell ghosts and the remaining activity in the residual fraction. Fractions were analyzed using dodecylsulphate/polyacrylamide gel electrophoresis at pH 6.0. The soluble fractions from metaphase and interphase cells exhibited three common unidentified ADP-ribosylated proteins corresponding to 78 000, 54 000 and 36 000 Da. In addition metaphase cells contained several other ADP-ribosylated proteins not present in interphase cells. The 0.2 M HCl extracts gave from metaphase cells radioactivity in the 32 000-39 000-Da region suggesting ADP-ribosylation of histone H1 with up to 10 residues of ADP-ribose and in the 17 000-20 000-Da region indicating ADP-ribosylation of core histones. The pattern of ADP-ribosylation of core histone in metaphase and interphase cells was qualitatively similar whereas the number of ADP-ribose residues per H1 molecule was higher in metaphase cells. The residual fraction contained free poly(ADP-ribose) and oligo(ADP-ribose). The results do not lend support to a special function of ADP-ribosylated histones in the mitotic event while certain ADP-ribosylated non-histone proteins may be specific for metaphase cells.  相似文献   

4.
Hyper(ADP-ribosyl)ation of histone H1   总被引:2,自引:0,他引:2  
Nucleosomal chains of various repeat unit lengths were generated by a mild micrococcal nuclease digestion of purified pancreatic nuclei. Maximal nucleosome associated poly(ADP-ribose) polymerase activity was recovered in trimeric to tetrameric chromatin fragments, after which the enzyme activity gradually decreased and stabilized towards oligomeric periodicities of 11 to 16 nucleosomes. Electrophoresis of [32P]ADP-ribosylated histones on first-dimension acid-urea or acid-urea-Triton gels and on second-dimension acid--urea--cetyltriammonium bromide gels revealed that, of all histones, only histone H1 could be significantly poly(ADP-ribosyl)ated while only minimal modification could be recovered with histone H1(0). Furthermore, the extent of ADP-ribosylation present on pancreatic histone H1 is shown to proportionally retard this protein's electrophoretic mobility in all gel systems and to consist of a distinct series of at least 12 modification intermediates which can be evidenced, in nuclei or nucleosomes, and fully recovered along with histone H1 upon its selective extraction with 5% perchloric acid. The generation of these increasingly ADP-ribosylated forms of histone H1 is also demonstrated to be time dependent and the more complex ADP-ribosylated forms of this histone are favored at high NAD+ concentrations. Moreover, the electrophoretic mobilities of all intermediates are unaffected by the presence of the nonionic detergent Triton X-100.  相似文献   

5.
Poly (ADP-ribosylated) histones appear to be intermediates in nuclear processes that involve DNA strand breaks. We have studied histone ADP-ribosylation in cellular lysates from activated human lymphoid cells in culture. Modified histones differing in the number of ADP-ribose groups gave separate bands upon two-dimensional gel electrophoresis. Cellular lysates from control cells contained histones modified with 1 to 15 ADP-ribose groups. Stimulation of the cells during culture with phytohemagglutinin (PHA) or a phorbol ester (TPA) as well as combinations of these two reagents led to a significant increase in the upper limit number of ADP-ribose groups attached to histones in the presence of divalent metal ions. Hyper (ADP-ribosylated) H2B carrying at least 32 ADP-ribose groups gave a distinctly characteristic pattern on two-dimensional gels showing that highly ordered enzymatic steps are followed for its synthesis. Moreover, it was found that PHA and/or TPA induces branching of the poly (ADP-ribose) on H2B. The increase in histone poly (ADP-ribosylation) following lymphocyte activation was less dramatic during incubation of cellular lysates in the absence of divalent metal ions. The increased histone modification observed in this study may result from an increase in cell proliferation during activation of lymphoid cells. The finding that the number of ADP-ribose groups on H4 equals or exceeds by one the number of acetyl groups suggests that the two modifications may share common functions.  相似文献   

6.
In vitro ADP-ribosylation of chromosomal protein and its modulation by spermine, 3-aminobenzamide (3-AB) and benzamide were studied by incubating the nuclei of cerebral hemisphere of 3-, 14- and 30-day old rats with 32P-NAD+. Histones get ADP-ribosylated more than the non-histone chromosomal (NHC) protein. H1 is the major target for ADP-ribosylation. Among the nucleosomal histones, H2B is ADP-ribosylated most. The other core histones also get ADP-ribosylated to a lesser extent. ADP-ribosylation of both histones and NHC proteins decreases during development. Spermine stimulates, whereas 3-AB and benzamide inhibit, 32P-ADP-ribose incorporation into histones and NHC proteins. These effects decrease with development. Mild digestion of chromatin by micrococcal nuclease (MNase), EcoRI, and AluI prior to ADP-ribosylation stimulates incorporation of 32P-ADP-ribose. The degree of stimulation decreases as development proceeds. Such alterations indicate progressive condensation of chromatin with development.  相似文献   

7.
Poly(ADP-ribosylation) of histones H1, H5 and non-histone chromosomal high-mobility-group proteins HMG 1, 2, 14 and 17 from chicken erythrocytes by purified calf thymus poly(ADP-ribose) polymerase was studied using acid/urea/Triton gel electrophoresis and autoradiography. With histone H1, besides ADP-ribosylated H1 supporting short chains of polymer, the appearance of H1 'dimer' was observed and this reaction was dependent on NAD concentration and incubation time. In addition, highly modified and/or aggregated species of histone H1 were observed. Histone H5 was slightly ADP-ribosylated at low NAD concentrations. At higher NAD concentrations or after longer incubations the formation of H5 'dimer' and of more modified forms of H5 could be observed. HMG 1 and HMG 2 were found to be ADP-ribosylated, the reaction being dependent on NAD concentration and time. Here again some discrete intermediates appeared. HMG 14 and HMG 17 were only slightly ADP-ribosylated under our experimental conditions. These results indicate that the purified DNA-independent poly(ADP-ribose) polymerase can catalyse the formation of H1 'dimer' as in nuclei and nucleosomes and that H5 and HMG proteins can also be ADP-ribosylated and produce well-defined higher complexes. These modifications of nuclear proteins may provide a means of localized conformational changes of the chromatin structure in vivo.  相似文献   

8.
9.
When rat liver nuclei were incubated with [adenine-3H]NAD, besides histone 1, histone 2A and especially histone 2B accepted 3H radioactivity. 3H radioactivity was also found on the non-histone proteins and on the small amounts of histones 1 and 3 released into the supernatant during incubation. [14C]Adenine uptake in vivo by liver and thymus nuclei showed radioactivity in histones 1 and 3. After digestion with Pronase and leucine aminopeptidase 14C- or 32P-labelled histone 3 released a serine phosphate-containing nucleotide, which on acid hydrolysis yielded ADP-ribose and serine phosphate. Serine phosphate was also found in the material from the nucleotide peaks from histones 2A and 2B. ADP-ribosylated histones 1 and 3 were more easily released from nuclei than their unmodified forms and showed higher [32P]Pi and [3H]lysine uptakes in vivo [Ord & Stocken (1975) FEBS Meet. Proc. 34, 113-125].  相似文献   

10.
11.
Phosphorylation of whole histones from calf thymus by the catalytic subunit of cyclic AMP-dependent protein kinase was markedly reduced when the histones were ADP-ribosylated. NAD, nicotinamide or free ADP-ribose molecule did not suppress the phosphorylation. Urea gel electrophoretic analyses of the phosphorylated histones which had already been ADP-ribosylated revealed that the suppression of phosphorylation occurred in both H1 and core histones. Therefore, the possibility that ADP-ribosylation may regulate the phosphorylation of histones phosphorylation in nuclei warrants further investigation.  相似文献   

12.
The pattern of nucleosomal histones poly(ADP-ribosyl)ation is changed under conditions which affect the poly(ADP-ribosyl)ation state of the enzyme. At low NAD concentrations the enzyme can poly(ADP-ribosyl)ate histones H1 and H1, H2A, A2A, and H2B. However at NAD concentrations above 10 microM the enzyme preferentially poly(ADP-ribosyl)ates histone H1 to a hyper ADP-ribosylated form. Furthermore we have observed hyper ADP-ribosylation of histone H2B at NAD concentrations of 10 microM suggesting that histone H2B can undergo the same type of ADP-ribosylation pattern as histone H1. Also at higher NAD concentrations an elongation of the polymer attached to the enzyme and other nuclear proteins takes place.  相似文献   

13.
We present evidence that T3 can alter the ADP-ribosylation of chromatin associated proteins. Nuclei from GH1 cells were incubated with [adenylate-32P]NAD and the radioactivity incorporated into histone and non-histone proteins was quantitated and analyzed by gel electrophoresis and autoradiography. Incubation of GH1 cells for 24 h with T3 lowered by 40-70% the [32P]ADP-ribose incorporated into nuclear proteins. However, incubation for 3 h with T3 resulted in a stimulation instead of a decrease of in vitro [32P]ADP-ribose incorporation. The major ADP-ribosylated component electrophoresed as a 120,000 molecular mass non-histone protein, and radiolabeled histones were also observed. The same protein species were observed for all the experimental groups and T3 affected the extent of ADP-ribosylation but did not alter the sedimentation of the [32P]ADP-ribosylated components excised from chromatin after micrococcal nuclease digestion.  相似文献   

14.
Poly(ADP-ribose) synthetase activity is found in nuclei of regenerating epithelial cells in the lower half of the crypts of guinea-pig small intestine. Nuclei from non-dividing but differentiating and maturing cells in the upper crypts and on the villi contain no more than about 10% of the synthetase activity of lower-crypt cell nuclei. The product in the active nuclei is shown to be 80% poly(ADP-ribosylated) protein and 20% mono(ADP-ribosylated) protein; 60% of thetotal labelled product was attached to acid-soluble proteins (including histones), and 40% to acid-insoluble (non-histone) proteins. The average number of ADP-ribosyl units in the oligomeric chains of the poly(ADP-ribosylated) proteins was 15 but the range of sizes of (ADP-ribose) oligomers attached to nuclear proteins was smaller in villus than in crypt cell nuclei.  相似文献   

15.
1. Acceptor proteins for poly(ADP-ribose) have been identified in nuclei from mouse testis, liver, kidney and spleen. Purified nuclei were incubated in vitro with [14C]NAD, extracted sequentially with 5% HClO4 and 0.25 N-HCl and labelled proteins analysed on acetic acid/urea polyacrylamide gels pH 2.9. 2. Results show that: (a) in vitro there are significant differences between tissues in the extent of poly(ADP-ribosylation) of nuclear proteins; (b) in testis nuclei two tissue specific proteins are poly(ADP-ribosylated) to higher specific activity than histones; (c) there are significant differences between in vivo and in vitro studies on poly(ADP-ribosylation) of nuclear proteins in testis nuclei.  相似文献   

16.
ADP-ribosylation of histones and non-histone nuclear proteins was studied in isolated nuclei during the naturally synchronous cell cycle of Physarum polycephalum. Aside from ADP-ribosyltransferase (ADPRT) itself, histones and high mobility group-like proteins are the main acceptors for ADP-ribose. The majority of these ADP-ribose residues is NH2OH-labile. ADP-ribosylation of the nuclear proteins is periodic during the cell cycle with maximum incorporation in early to mid G2-phase. In activity gels two enzyme forms with Mr of 115,000 and 75,000 can be identified. Both enzyme forms are present at a constant ratio of 3:1 during the cell cycle. The higher molecular mass form cannot be converted in vitro to the low molecular mass form, excluding an artificial degradation during isolation of nuclei. The ADPRT forms were purified and separated by h.p.l.c. The low molecular mass form is inhibited by different ADPRT inhibitors to a stronger extent and is the main acceptor for auto-ADP-ribosylation. The high molecular mass form is only moderately auto-ADP-ribosylated.  相似文献   

17.
Two-dimensional electrophoresis (2D-PAGE) of a histone fraction isolated from nuclei of embryos of the sea urchin Hemicentrotus pulcherrimus exhibited almost all histone species at all stages examined. At the gastrula stage, a spot of H1A became evident and three spots closely associated with one another were found in place of a single spot of H2A.1. In the histone fraction isolated from [adenylate-32P] NAD+-treated nuclei of all stages examined, autoradiograms of 2D-PAGE exhibited spots of mono [ADP-ribosyl] ated H1 and polymodified H2B.2, H3.1, H3.3 and H4 but did not show ADP-ribosylated H2A.1, H2A.2 or H2B.1. Poly [ADP-ribosyl] ated H3.2, found in morulae, was not detectable in blastulae and gastrulae. Treatment with dimethylsulfate, known to activate ADP-ribosylation in other cell types, induced poly [ADP-ribosyl] ation of H2A.2 and H2B.1 in embryos at all stages examined, and also polymodification of H3.2 in gastrulae. ADP-ribosylation of H1, H2B.2, H3.1 and H3.3 was hardly affected by dimethylsulfate treatment, though modification of H4 was blocked by this treatment. Probably, strong regulation of ADP-ribosyltransferase reactions causes failures of modification of H2A.2 and H2B.1 throughout early development and also of H3.2 at the gastrula stage. Regulation of histone ADP-ribosylation is thought to alter chromatin structures and the rate of gene expression, contributing to cell differentiation.  相似文献   

18.
Liver nuclei were prepared through the first cell cycle in partially hepatectomized young rats showing 30% parenchymal cell synchrony. To determine if nucleosome structure altered during this period, liver nuclei from sham-operated rats were compared with nuclei isolated at various times after partial hepatectomy. These nuclei were exposed to deoxyribonuclease I (EC 3.1.4.5), deoxyribonuclease II (EC 3.1.4.6) or micrococcal nuclease (EC 3.1.4.7) and the nucleosome-associated DNA length was ascertained. In no case was a difference in the DNA lengths associated with nucleosome structure observed. Differences were observed with regard to the histones and their relative association with nuclear material. When nuclei from normal rat livers were incubated in hypo-osmolar medium 9% of histone 1 and 4% of the other histones were released. These released histones, unlike those remaining bound to the nuclei, showed high [3H]adenosine and [3H]acetate uptakes in vivo. [32P]P1 uptake was also much greater into released than bound histones 1 and 3, but was not different for histone2A. At 3.5-4.5 h after partial hepatectomy, the release of histone 1 was trebled and that of histone 4 doubled. By 13.5 h, when phosphorylation of the bound forms of histones 2A and especially 1 was increased, no further changes in histone release in hypo-osmolar medium were found. The released histones from partially hepatectomized livers had indistinguishable [3H]adenosine uptakes from controls. The roles are discussed of phosphorylation and ADP-ribosylation in labilizing histone binding.  相似文献   

19.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

20.
Changes in levels of biosynthesis of DNA, RNA, and histones were compared with relative proportions of each histone class during primitive erythropoiesis in embryonic chicks. We confirmed that erythrocyte-specific histone 5 (H5) was substantial in the earliest accessible, erythroblast-enriched stage and that it doubled in relative amount between polychromatic and orthochromatic stages to about 1 mol per 2 mol of each nucleosomal histone, still considerable less than in adult definitive erythrocytes. No other histones changed during primitive erythropoiesis, but the molar proportion of histone 1 (H1) always exceeded that of H5 in these cells, unlike definitive erythrocytes. The increase in content of H5 was accompanied by continued decline in synthesis of the other histones and DNA. The accumulation of H5 during development appears to occur in steps corresponding to the maturation of the primitive and definitive erythroid cell lines. Lysine-rich histones were more easily extracted from nuclei of the erythrosynthesis in whole cells and in isolated nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号