首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with [3H]acetic anhydride, [3H]formaldehyde, and succinimidyl 2,3-[3H]propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays.  相似文献   

2.
The kinetics of hydrolysis of rat tendon type I, bovine nasal septum type II, and human placental type III collagens by class I and class IIClostridium histolyticum collagenases (CHC) have been investigated. To facilitate this study, radioassays developed previously for the hydrolysis of these [3H]acetylated collagens by tissue collagenases have been adapted for use with the CHC. While the CHC are known to make multiple scissions in these collagens, the assays are shown to monitor the initial proteolytic events. The individual kinetic parametersk cat andK M have been determined for the hydrolysis of all three collagens by both class I and class II CHC. The specific activities of these CHC toward fibrillar type I and III collagens have also been measured. In contrast to human tissue collagenases, neither class of CHC exhibits a marked specificity toward any collagen type either in solution or in fibrillar form. The values of the kinetic parametersk cat andK M for the CHC are similar in magnitude to those of the human enzymes acting on their preferred substrates. Thus, the widely held view that the CHC are more potent collagenases is not strictly correct. As with the tissue collagenases, the local collagen structure at the cleavage sites is believed to play an important role in determining the rates of the reactions studied.  相似文献   

3.
The kinetics of hydrolysis of rat tendon type I, bovine nasal septum type II, and human placental type III collagens by class I and class IIClostridium histolyticum collagenases (CHC) have been investigated. To facilitate this study, radioassays developed previously for the hydrolysis of these [3H]acetylated collagens by tissue collagenases have been adapted for use with the CHC. While the CHC are known to make multiple scissions in these collagens, the assays are shown to monitor the initial proteolytic events. The individual kinetic parametersk cat andK M have been determined for the hydrolysis of all three collagens by both class I and class II CHC. The specific activities of these CHC toward fibrillar type I and III collagens have also been measured. In contrast to human tissue collagenases, neither class of CHC exhibits a marked specificity toward any collagen type either in solution or in fibrillar form. The values of the kinetic parametersk cat andK M for the CHC are similar in magnitude to those of the human enzymes acting on their preferred substrates. Thus, the widely held view that the CHC are more potent collagenases is not strictly correct. As with the tissue collagenases, the local collagen structure at the cleavage sites is believed to play an important role in determining the rates of the reactions studied.  相似文献   

4.
The initial proteolytic events in the hydrolysis of rat tendon type I collagen by the class I and II collagenases from Clostridium histolyticum have been investigated at 15 degrees C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been used to detect the initial cleavage fragments of both the alpha 1(I) and alpha 2 chains, which migrate at different rates in the buffer system employed. Experiments with the class I collagenases indicate that the first cleavage occurs across all three chains of the triple helix close to the C-terminus to produce fragments whose alpha chains have molecular weights of approximately 88,000. The second cleavage occurs near the N-terminus to reduce the molecular weight of the alpha chains to 80,000. Initial proteolysis by the class II collagenases occurs across all three chains at a site in the interior of the collagen triple helix to give N- and C-terminal fragments with alpha-chain molecular weights of 35,000 and 62,000, respectively. The C-terminal fragment is subsequently cleaved to give fragments with alpha-chain molecular weights of 59,000. These results indicate that type I collagen is degraded at several hyperreactive sites by these enzymes. Thus, initial proteolysis by these bacterial collagenases occurs at specific sites, much like the mammalian collagenases. These results with the individual clostridial collagenases provide an explanation for earlier data which indicated that collagen is degraded sequentially from the ends by a crude clostridial collagenase preparation.  相似文献   

5.
The class I and IIClostridium histolyticum collagenases (CHC) have been used to identify hyperreactive sites in rat type I, bovine type II, and human type III collagens. The class I CHC attack both collagens at loci concentrated in the N-terminal half of these collagens starting with the site closest to the N-terminus. The class II CHC initiate collagenolysis by attacking both collagens in the interior to produce a mixture of C-terminal 62,000 and a N-terminal 36,000 fragments. Both fragments are next shortened by removal of a 3000 fragment. These results are very similar to those reported earlier for the hydrolysis of rat type I collagen by these CHC, indicating that the three collagens share many hyperreactive sites. Similar reactions carried out with the respective gelatins show that they are cleaved at many sites at approximately the same rate. Thus, the hyperreactivity of the sites identified must be attributed to their environment in the native collagens. N-terminal sequencing of the fragments produced in these reactions has allowed the identification of 16 cleavage sites in the α1(I), α2(I), α1(II), and α1(III) collagen chains. An analysis of the triple helical stabilities of these cleavage site regions as reflected by their imino acid contents fails to yield a correlation between reactivity and triple helical stability. The existence of these hyperreactive CHC cleavage sites suggests that type I, II, and III collagens contain regions that have specific nontriple helical conformations. The sequence of these sites presented here now makes it possible to investigate these conformations by computational and peptide mimetic techniques.  相似文献   

6.
Sequence specificities of human fibroblast and neutrophil collagenases.   总被引:3,自引:0,他引:3  
The sequence specificities of human fibroblast and neutrophil collagenases have been investigated by measuring the rate of hydrolysis of 60 synthetic oligopeptides covering the P4 through P'5 subsites of the substrate. The choice of peptides was patterned after both known cleavage sites in noncollagenous proteins and potential cleavage sites (those containing Gly-Ile-Ala, Gly-Leu-Ala, or Gly-Ile-Leu sequences) found in types I, II, III, and IV collagens. The initial rate of hydrolysis of the P1-P'1 bond of each peptide has been measured under first-order conditions ([SO] much less than KM), and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P4 through P'4 all influence the hydrolysis rates for both collagenases. However, the effects of substitutions at each site are distinctive and are consistent with the view that human fibroblast and neutrophil collagenases are homologous but nonidentical enzymes. For peptides with unblocked NH2 and COOH termini, occupancy of subsites P3 through P'3 is necessary for rapid hydrolysis. Compared with the alpha 1(I) cleavage sequence, none of the substitutions investigated at subsites P3, P2, and P'4 produces markedly improved substrates. In contrast, many substitutions at subsites P1, P'1, and P'2 improve specificity. The preferences of both collagenases for alanine in subsite P1 and tryptophan or phenylalanine in subsite P'2, is noteworthy. Human neutrophil collagenase accommodates aromatic residues in subsite P'1 much better than human fibroblast collagenase. The subsite preferences observed for human fibroblast collagenase in these studies agree well with the residues found at cleavage sites in noncollagenous substrates. However, the sequence specificities of these collagenases cannot explain the failure of these enzymes to hydrolyze many potentially cleavable but apparently protected sites in intact collagens. This represents additional support for the notion that the local structure of collagen is important in determining the location of collagenase cleavage sites.  相似文献   

7.
A series of experiments has been carried out to characterize 58-kDa human neutrophil collagenase (HNC) and compare it with human fibroblast collagenase (HFC). N-Terminal sequencing of latent and spontaneously activated HNC shows that it is a distinct collagenase that is homologous to HFC and other members of the matrix metalloproteinase gene family. Activation occurs autolytically by hydrolysis of an M-L bond at a locus homologous to the Q80-F81-V82-L83 autolytic activation site of HFC. This releases a 16-residue propeptide believed to contain the "cysteine switch" residue required for latency. Polyclonal antibody raised against HNC cross-reacts with HFC but with none of the other major human matrix metalloproteinases examined. Treatment of HNC with endoglycosidase F or N-glycosidase F indicates that it is glycosylated at multiple sites. The deglycosylated latent and spontaneously activated enzymes have molecular weights of approximately 44K and 42K, respectively. Differences in the carbohydrate processing of HFC and HNC may determine why HFC is a secreted protein while HNC is stored in intracellular granules. The kinetic parameters kcat and KM for the hydrolysis of the interstitial collagen types I, II, and III in solution by both collagenases have been determined. The strong preferences of HNC for type I collagen and of HFC for type III collagen found in earlier studies have been confirmed. The preference of HNC for type I over type III collagen is almost abolished when fibrillar collagens are used as substrates, but the preference for HFC for type III over type I collagen is only partially decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The class I and IIClostridium histolyticum collagenases (CHC) have been used to identify hyperreactive sites in rat type I, bovine type II, and human type III collagens. The class I CHC attack both collagens at loci concentrated in the N-terminal half of these collagens starting with the site closest to the N-terminus. The class II CHC initiate collagenolysis by attacking both collagens in the interior to produce a mixture of C-terminal 62,000 and a N-terminal 36,000 fragments. Both fragments are next shortened by removal of a 3000 fragment. These results are very similar to those reported earlier for the hydrolysis of rat type I collagen by these CHC, indicating that the three collagens share many hyperreactive sites. Similar reactions carried out with the respective gelatins show that they are cleaved at many sites at approximately the same rate. Thus, the hyperreactivity of the sites identified must be attributed to their environment in the native collagens. N-terminal sequencing of the fragments produced in these reactions has allowed the identification of 16 cleavage sites in the 1(I), 2(I), 1(II), and 1(III) collagen chains. An analysis of the triple helical stabilities of these cleavage site regions as reflected by their imino acid contents fails to yield a correlation between reactivity and triple helical stability. The existence of these hyperreactive CHC cleavage sites suggests that type I, II, and III collagens contain regions that have specific nontriple helical conformations. The sequence of these sites presented here now makes it possible to investigate these conformations by computational and peptide mimetic techniques.  相似文献   

9.
Breakdown of triple-helical interstitial collagens is essential in embryonic development, organ morphogenesis and tissue remodelling and repair. Aberrant collagenolysis may result in diseases such as arthritis, cancer, atherosclerosis, aneurysm and fibrosis. In vertebrates, it is initiated by collagenases belonging to the matrix metalloproteinase (MMP) family. The three-dimensional structure of a prototypic collagenase, MMP-1, indicates that the substrate-binding site of the enzyme is too narrow to accommodate triple-helical collagen. Here we report that collagenases bind and locally unwind the triple-helical structure before hydrolyzing the peptide bonds. Mutation of the catalytically essential residue Glu200 of MMP-1 to Ala resulted in a catalytically inactive enzyme, but in its presence noncollagenolytic proteinases digested collagen into typical 3/4 and 1/4 fragments, indicating that the MMP-1(E200A) mutant unwinds the triple-helical collagen. The study also shows that MMP-1 preferentially interacts with the alpha2(I) chain of type I collagen and cleaves the three alpha chains in succession. Our results throw light on the basic mechanisms that control a wide range of biological and pathological processes associated with tissue remodelling.  相似文献   

10.
We have studied the degradation of type X collagen by human skin fibroblast and rat uterus interstitial collagenases and human 72-kDa type IV collagenase. The interstitial collagenases attacked the native type X helix at two loci, cleaving residues Gly92-Leu93 and Gly420-Ile421, both scissions involving Gly-X bonds of Gly-X-Y-Z-A sequences. However, the human and rat interstitial enzymes displayed an opposite and substantial selectivity for each of these potential sites, with the uterine enzyme catalyzing the Gly420-Ile421 cleavage almost 20-fold faster than the Gly92-Leu93 locus. Values for enzyme-substrate affinity were approximately 1 microM indistinguishable from the corresponding Km values against type I collagen. Interestingly, in attacking type X collagen, both enzymes manifested kinetic properties intermediate between those characterizing the degradation of native and denatured collagen substrates. Thus, energy dependence of reaction velocity revealed a value of EA of 45 kcal, typical of native interstitial collagen substrates. However, the substitution of D2O for H2O in solvent buffer failed to slow type X collagenolysis significantly (kH/kD = 1.1), in contrast to the 50-70% slowing (kH/kD = 2-3) observed with native interstitial collagens. Since this lack of deuterium isotope effect is characteristic of interstitial collagenase cleavage of denatured collagens, we investigated the capacity of another metalloproteinase with substantial gelatinolytic activity, 72-kDa type IV collagenase, to degrade type X collagen. The 72-kDa type IV collagenase cleaved type X collagen at both 25 and 37 degrees C, and at loci in close proximity to those attacked by the interstitial enzymes. No further cleavages were observed at either temperature with type IV collagenase, and although values for kcat were not determined (due to associated tissue inhibitor of metalloproteinases-2), catalytic rates appeared to be substantial in comparison to the interstitial enzymes. In contrast, type X collagen was completely resistant to proteolysis by stromelysin. Type X collagen thus appears to be highly unusual in its susceptibility to degradation by both interstitial collagenase and another member of the metalloproteinase gene family.  相似文献   

11.
A comparative analysis of MALDI TOF mass spectra of low-molecular products resulting from the hydrolysis of native collagen I by collagenases of various classes (bacterial metallocollagenase from Clostridium histolyticum, serine collagenase from the Morikrasa commercial preparation, cysteine collagenase from Serratia proteomaculans, and cysteine collagenases from larvae of beetles Dermestesfrischi and D. maculates) was carried out. The spectra contain a number of ion peaks common for all collagenases; nevertheless, the mass spectra of each hydrolysate contains a unique set of peaks ("fingerprint") characteristic of each enzyme. This is especially true for the peaks of major products with relative intensities of more than 50%. At the same time, the enzymes of one class (cysteine collagenases) exhibit in their mass spectra peaks of identical major products. The results show a potential opportunity for MALDI TOF application in the primary screening of collagenases according to the fingerprints of collagen hydrolysis products.  相似文献   

12.
Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11'). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11') of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.  相似文献   

13.
To compare the expression of extracellular matrix components by fibroblasts from different periodontal tissues, rat molar periodontal ligament fibroblasts (RPL) and rat gingival fibroblasts (RGF) were isolated and cultured from individual animals. Pulse-chase experiments using [35S]methionine as a precursor revealed that confluent populations of early passage cells of both cell types synthesized similar amounts of collagen, fibronectin, and SPARC/osteonectin. Qualitative and quantitative differences were apparent in the relative proportions of type III collagen, in the rates of procollagen processing, and in the synthesis of a small number of unidentified proteins observed by sodium dodecyl sulphate--polyacrylamide gel electrophoresis. Collagen constituted 24-26% of the radiolabelled proteins secreted by both cell types, type I being the predominant collagen, with lower amounts of type III (3-8% RGF, 8-18% RPL) and type V (approximately 1%) collagens. Procollagen processing in the culture medium of RPL cells was more rapid than for RGF cells, but was increased in multilayered cultures of both RPL and RGF. In multilayered cultures, collagen TCA fragments, indicative of tissue collagenase activity, were also identified. Active and latent tissue collagenases and a latent form of a novel collagenolytic enzyme (matrix metalloendoproteinase-V) that cleaves native TCA fragments were demonstrated in these cultures. Addition of either concanavalin A (10(-6) M) or retinoic acid (10(-5) M) to the culture medium stimulated the secretion of the latent collagenolytic enzymes. Collagenase inhibitor was also synthesized by both RGF and RPL cells. SPARC/osteonectin, a 40-kilodalton glycoprotein, represented 0.5-1.0% of the secreted radiolabelled proteins of both cell types.  相似文献   

14.
A comparative analysis of MALDI TOF mass spectra of low-molecular products resulting from the hydrolysis of native collagen I by collagenases of various classes (bacterial metallocollagenase from Clostridium histolyticum, serine collagenase from the Morikrasa commercial preparation, cysteine collagenase from Serratia proteomaculans, and cysteine collagenases from larvae of beetles Dermestes frischi and D. maculatus) was carried out. The spectra contain a number of ion peaks common for all collagenases; nevertheless, the mass spectra of each hydrolysate contains a unique set of peaks (“fingerprint”) characteristic of each enzyme. This is especially true for the peaks of major products with relative intensities of more than 50%. At the same time, the enzymes of one class (cysteine collagenases) exhibit in their mass spectra peaks of identical major products. The results show a potential opportunity for MALDI TOF application in the primary screening of collagenases according to the fingerprints of collagen hydrolysis products.  相似文献   

15.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

16.
Carbamylation is a post-translational modification due to nonenzymatic binding of cyanate, a by-product of urea, on free amino groups of proteins. Post-translational modifications are known to induce alterations in structural and functional properties of proteins, thus disturbing protein-protein or cell-protein interactions. We report the impact of carbamylation on type I collagen sensitivity to enzymatic proteolysis. Type I collagen was extracted from rat tail tendons and carbamylated by incubation with 0.1 M potassium cyanate at 37 degrees C for 2, 6 or 24 h. Degradation assays revealed that carbamylated collagen exhibited a greater resistance to collagenases (i.e. bacterial collagenase, matrix metalloproteinase(MMP)-1, MMP-8 and MMP-13), together with an increased sensitivity to MMP-2. Evaluation of collagen triple helix conformation by polarimetry indicated that local destabilizations of triple helix structure related to carbamylation could be responsible for the observed differences in sensitivity. These results confirm the crucial role of triple helix integrity in the degradation of type I collagen by MMPs, and support the deleterious impact of post-translational modifications in vivo by altering the balanced remodeling of collagen within connective tissue.  相似文献   

17.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

18.
Collagenase degrades collagen in vivo in the ischemic heart.   总被引:2,自引:0,他引:2  
Previously, we showed that ischemic rat heart contains an activated procollagenase capable of degrading collagen in vitro. We now demonstrate that the collagen resident in such hearts (in vivo) also becomes degraded, producing characteristic fragments implicating the action of an activated collagenase. The evidence is the appearance of amino-terminal dansyl-Ile (+dansyl-Leu) residues in pepsin digests of re-oxygenated rat hearts and immunoblots showing 3/4 length (alphaA) fragments from type I collagen. Also, in ischemic rat myocardium, alphaA(I) and alphaA(III) fragments were detected in pepsin digests. The time periods required for the cleavage and degradation of collagen suggest the participation of a procollagenase that becomes activated. Results demonstrate for the first time that an interstitial collagenase in such hearts initiates in vivo degradation of types I and III collagens.  相似文献   

19.
The rabbit alveolar macrophage secretes at least two collagenolytic metalloproteinases in vitro including an interstitial collagenase and a type V collagenase. Using assays previously shown to discriminate between these two activities, the secretion of these two enzyme activities was investigated. Both enzyme activities accumulated in culture over 11 days and the release of both were similarly inhibited by cycloheximide. Collagenolytic activity was negligible in cell lysates. The interstitial collagenase was found in a latent form but the type V collagenase activity was active in the culture medium. When cultured in the presence of dexamethasone, the secretion of both the enzymes were identically inhibited in a dose-dependent manner. Indomethacin was an effective inhibitor of secretion of both collagenases at a concentration of 10(-5) M but not at lower concentrations. Finally, bacterial lipopolysaccharide stimulated the secretion of both type V and interstitial collagenase by these cells. These studies indicate that, like the interstitial collagenase, the type V collagenase is released from the cell as synthesized and is not stored intracellularly. Protein synthesis is necessary for the release of both these collagenases. Furthermore, the release of type V collagenase responded to dexamethasone, indomethacin, and lipopolysaccharide in a manner identical to the secretion of the interstitial collagenase suggesting that synthesis and secretion of these two enzymes are regulated in a similar manner.  相似文献   

20.
A method specific for identification of collagens irrespective of type, species, or tissue origin, and of their derived fragments of molecular weight more than 10,000, is described. The method is based on the low-temperature affinity between clostridial collagenase and almost all types of collagens as well as on the affinity between collagenase and its antibodies. Various collagens or fragments derived from them by treatment with CNBr were separated by SDS-PAGE and immobilized onto a nitrocellulose membrane by a slot-blot technique or electrotransfer. Following binding of clostridial collagenase to a collagen or its fragments at 0 degrees C, the collagen-collagenase complex was fixed with glutaraldehyde. The complex was then allowed to bind anti-collagenase antibody at room temperature. The new complex was subsequently treated with 125I-labeled donkey anti-rabbit IgG and visualized as an autoradiogram. Under the conditions of low temperature used, the collagenase binds to collagens without causing their digestion. This procedure is specific for detection of soluble collagens as well as of insoluble collagens converted to fragments by treatment with CNBr. The method is uniquely suited for detection of fragments of tissue collagens. Also, it may serve as a prototype for methods for detection of other specific polymeric substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号