首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During regeneration of the amputated tadpole tail, reconstruction of the epithelial basal lamina and basement lamella occurs only after the other major morphogenetic processes are well established. At 4 days after tail transection of the bullfrog tadpole, electron microscopy of the internal surface of the basal cell layer of the blastemal epithelium reveals it to be relatively free of extracellular matrix. By 11 days a basal lamina of distinct regularity has formed, and the first rodlets and fibers signaling the replacement of the collagenous basement lamella are identified. At 15 days the basal cells of the epithelium start to exhibit specialization of their internal cell surfaces: Hemidesmosomes and associated tonofilaments appear, and the adepidermal globular layer is formed. Orthogonal packing of collagen plies begins by 19 days after transection, the number of layers exceeding 22 in the latter stages of regeneration.  相似文献   

2.
In this paper the ultrastructural features of the epithelial-mesenchymal interface in mandibular processes of embryonic chicks have been examined using scanning electron microscopy. Mandibular epithelium is required for the mesenchyme to differentiate as osteoblasts and to deposit the membrane bones of the mandible. The surface morphology of the epithelium changes from the lateral to the medial face of the mandible from rounded cells, each with a central cilium to flattened cells with numerous microvilli. Treatment with trypsin and pancreatin was used to digest the basal lamina so as to separate epithelium from mesenchyme. This exposed a thick, fibrillar basement membrane (reticular lamina), which was thicker underlying the caudal epithelium than under the cephalad epithelium. Addition of collagenase to the trypsin/pancreatin solution degraded some of the basement lamella, especially that underlying epithelium on the caudal portion of each mandibular process. Selective degradation of basement lamella is postulated as one means of regulating inductive epithelial-mesenchymal interactions. EDTA was used to isolate basal laminae on mandibular mesenchyme. SEM was used to confirm the integrity of the basal lamina, its structure, and its association with overlying epithelial cells and underlying basement lamella.  相似文献   

3.
The interface between epithelium and mesenchyme may be involved in inductive interactions which occur during development. This interface within the growth bud, or blastema, of a regenerating limb has been examined to determine whether changes in basement-membrane structures are visible in regions of putative epithelial-mesenchymal inductive interaction. Regenerating forelimbs of adult newts were fixed by perfusion with osmotically balanced aldehydes. Late-bulb to early-digit stage regenerates were collected and processed either for light and transmission electron microscopy or for scanning electron microscopy. Light microscopy confirmed that regions characterized by increased numbers of subepithelial mesenchymal cells were covered by a diffusely stained basement membrane. Transmission electron microscopy of these regions revealed two structural components of the basement membrane. The thin basal lamina was continuous in all regions of all stages examined, but it was attenuated apically in areas of mesenchymal cell accumulation. The thicker underlying reticular lamina was markedly attenuated in these regions near the blastemal apex. Scanning electron microscopy of de-epithelialized blastemas revealed that, apically, the reticular lamina formed only a delicate lacelike network. On the base of the blastema, it formed a dense fibrillar meshwork which was further organized into a geometric pattern in the adjacent stump skin. Cumulatively, these observations suggest that physical contact between epithelial and mesenchymal cells is not essential at these stages, but that regions of putative epithelial-mesenchymal interaction are characterized by a distinctly diminished reticular lamina. Structural changes in basement-membrane components may be related to termination of local inductive events.  相似文献   

4.
The limb tissues of the adult newt investigated for their fine structure include epidermis, subcutaneous glands, dermis, striated muscle, peripheral nerves and blood vessels. This survey complements and extends previous observations, emphasizing intercellular junctions, and the ubiquitous “glycocalyx” (= polysaccharide-protein lamella, around cells and adjacent to epithelia). Our survey touches on the characteristic tonofilaments, intercellular desmosomes and basal hemidesmosomes of the epidermis. The subcutaneous glands consist of secretory cells with a granular product, and myoepithelial cells; intercellular desmosomes are present. The adepidermal reticulum of collagen fibrils reveals periodic regions of intersecting fibrils ( = nodules), and fibril continuity with the underlying dermis: a striking feature is the adipose tissue closely applied to the adepidermal reticulum. The limb striated muscle displays typical banded myofibrils, and a triad system with centrotubules in the I-band close to the Z-band: terminal sacs of sarcoplasmic reticulum complete the triad system. A particularly prominent glycocalyx is applied to the surface of the sarcolemma. The peripheral nerves of the limb possess connective tissue sheaths with prominent vesiculation of the cell membranes, and an occasional intercellular desmosomal junction. Blood vessels typically have endothelial cells with prominently vesiculated plasma membranes. This investigation serves as the basis for recognizing the fine structure of tissue responses to trauma, their repair, and regeneration.  相似文献   

5.
The fine structure of the human forelimb apical ectodermal ridge of stages 12–19 was examined using techniques of transmission electron microscopy, freeze fracture, and scanning electron microscopy. This paper reports the presence of subcellular structures that distinguish the inductively active apical ectoderm from adjacent dorsal and ventral ectoderms.The apex of the human forelimb begins development with an epithelium of two cell layers (stage 12) which thickens at the distal tip during stages 13 and 14 into a multilayered apical ectodermal ridge. During this transition we have observed that the basal lamina differentiates from a bilayered structure to the definitive single lamina. Some cells in the ectoderm become detached from the basal lamina as stratification begins. At the same time these cells show increased mitotic activity and the developing ridge cells acquire gap junctions. Annular gap junctions are also observed. Gap junctions are not observed in adjacent, presumably noninductive, epithelia. Finally, the ridge cells next to the basal lamina acquire bundles of microfilaments that are oriented in the dorsal-ventral plane in the basal cytoplasm of the cells.The apical ridge reaches its greatest dimensions during stage 15. The number and peripheral extent of gap junctions also appear to be greatest at this same time. At stage 17, cells within the ridge begin to die, and other ridge cells engulf them. By stage 19, gap junctions in the apical epithelium are sparse and are of lesser diameter than in the definitive ridge. In addition, the oriented bundles of microfilaments present at stages 14–17 are absent. Thus, at stage 19 a morphologically distinct apical ectodermal ridge is no longer present. The apex of the limb is covered by two cell layers typical of human embryonic epidermis.  相似文献   

6.
The basement lamella of Xenopus tadpole skin has been viewed in situ by scanning microscopy, then isolated by trypsin treatment and used as a substrate for cell culture. The basal lamina may also be viewed after EDTA treatment. Responses of epithelial and mesenchymal cells to the lamella have been compared. Mesenchymal cells from chick skin and heart ventricle flatten and attach between the plies of the lamella, then infiltrate it. Myoblasts appear to move less readily within the lamella. Embryonic Xenopus skin epithelium spreads over the surface. Isolated chick skin epithelial cells first begin to spread, then round up and eventually attach to each other in clusters which form a flat basal surface above the lamella. Thus epithelial and mesenchymal cells cultured on this isolated extracellular material mimic aspects of normal tissue organization.  相似文献   

7.
The distribution of tissue hyaluronan has been assessed in the neuraxial region of 8.5 to 10.5 day mouse embryos using a fragment of bovine nasal cartilage proteoglycan that binds specifically to hyaluronan. Hyaluronan is abundant in all mesenchymal tissues, predominantly intercellularly, but markedly diminishes when mesenchymal cells organize into epithelia, as in the formation of somites. Hyaluronan reappears in abundance when epithelia (e.g. sclerotome) disperse into mesenchyme. Hyaluronan is present between cells of early epithelia (e.g. neural plate), but is lost during their subsequent development when it becomes abundant at their basement membrane regions. These results show for the first time changes in hyaluronan distribution during the development of embryonic epithelia. The hyaluronan distribution found is consistent with the functions proposed for hyaluronan in embryonic mesenchyme: intercellular hyaluronan would allow the epithelial cells to move and reduced hyaluronan would allow the cells to associate. The absence of intercellular hyaluronan in later epithelia would allow increased membrane contacts that lead to the formation of intercellular junctions. The restriction of hyaluronan to basement membrane regions in later epithelia further substantiates the suggestion that hyaluronan is a bona fide component of the basal lamina and that it is involved in maintaining epithelial morphology.  相似文献   

8.
J Overton 《Tissue & cell》1979,11(1):89-98
Cell responses to different natural substrates have been followed by scanning microscopy in order to evaluate the role of these substrates in morphogenesis. Matrix has been isolated then repopulated with suspensions of embryonic cells from chick skin, spinal ganglia, duodenal epithelium and heart. In some cases outgrowth from amphibian embryonic tissue was used. Basal lamina of the Xenopus tail may be exposed by freezing and thawing the tissue, or by EDTA treatment. The underlying lamella of orthogonally oriented collagen fibers may be exposed by use of trypsin or hyaluronidase. Trypsin causes more clumping of collagen fibers and a coarser texture of the matrix. On trypsin isolated basement lamella, nerve cell processes grow out on the surface and show no strong tendency to penetrate the lamella while skin mesenchymal cells commonly burrow among the collagen plies. Epithelial cells remain on the surface. On the basal lamina mesenchymal cells ruffle in early stages of culture, then flatten. Epithelial cells flatten rapidly on the lamina. These differences in cell response are in some cases closely related to cell behavior in vivo and suggest that cells show a selective response to the chemical composition of the substrate as well as to its physical conformation.  相似文献   

9.
D R Burgess 《Tissue & cell》1976,8(1):147-158
During the period of early morphogenetic folding of the intestinal epithelium, changes in the epithelial-mesenchymal interface were observed by light microscopy, scanning and transmission electron microscopy. The epithelium in cross-section, appears first as a circle, then an ellipse and finally by a triangle prior to the formation of the first three previllous ridges. The bases of all epithelial cells are flat at the circular stage. At the ellipse and triangle stages the bases of the epithelial cells occupying the sides possess lobopodia that do not penetrate the basal lamina. The immediate mesenchymal cells subjacent to those epithelial cells on the sides of the ellipse and triangle alter their orientation to being rounded-up or perpendicular to the plane of the basal lamina. Large numbers of fine mesenchymal pseudopodia in addition to many extracellular fibrils are revealed by transmission and scanning electron microscopy at the epithelial-mesenchymal interface. The fine mesenchymal pseudopodia come into close contact but do not penetrate the ruthenium red-staining basal lamina. The possible roles of close contact between epithelium and mesenchyme, the alteration in orientation of mesenchyme cells, and of the basal lamina in tissue interaction are discussed.  相似文献   

10.
Conversion of the nephrogenic mesenchyme into epithelial tubules requires an inductive stimulus from the ureter bud. Here we show with immunofluorescence techniques that the undifferentiated mesenchyme before induction expresses uniformly type I and type III collagens. Induction both in vivo and in vitro leads to a loss of these proteins and to the appearance of basement membrane components including type IV collagen. This change correlates both spatially and temporally with the determination of the mesenchyme and precedes and morphological events. During morphogenesis, type IV collagen concentrates at the borders of the developing tubular structures where, by electron microscopy, a thin, often discontinuous basal lamina was seen to cover the first pretubular cell aggregates. Subsequently, the differentiating tubules were surrounded by a well-developed basal lamina. No loss of the interstitial collagens was seen in the metanephric mesenchyme when brought into contact with noninducing tissues or when cultured alone. Similar observations were made with nonnephrogenic mesenchyme (salivary, lung) when exposed to various heterotypic tissues known to induce tubules in the nephrogenic mesenchyme. The sequential shift in the composition of the extracellular matrix from an interstitial, mesenchymal type to a differentiated, epithelial type is so far the first detectable response of the nephrogenic mesenchyme to the tubule- inducing signal.  相似文献   

11.
Pigment cell precursors in the vegetal plate of late mesenchyme blastulae of the sea urchin Strongylocentrotus purpuratus begin to express a cell surface epitope recognized by the monoclonal antibody SP-1/20.3.1. When one-quarter gastrulae are dissociated into ectodermal and mesenchymal fractions, most SP-1/20.3.1 immunoreactive cells separate into the mesenchymal fraction, whereas at the full gastrula and all later stages almost all epitope-bearing cells are in the ectodermal fraction. Exposure of embryos to sulfate-free seawater p-nitrophenyl beta-D-xyloside, and tunicamycin, all of which prevent primary mesenchyme migration, does not inhibit SP-1/20.3.1 immunoreactive cells from distributing similarly to those in controls, although pigment synthesis is completely inhibited in sulfate-free conditions. Time-lapse video sequences reveal that pigment cells, and a small set of rapidly migrating, SP-1/20.3.1 immunoreactive amoeboid cells that appear in the pluteus, remain closely associated with the ectodermal epithelium during most of larval development. Transmission electron microscopy observations of plutei show pigment cells tightly apposed to the ectodermal epithelium at discontinuities in the basal lamina and sandwiched between the basal lamina and the epithelial cells. It is concluded that SP-1/20.3.1 immunoreactive mesenchymal cells invade the ectodermal epithelium and may use migratory substrates other than those used by primary mesenchymal cells.  相似文献   

12.
Elongation of mammary ducts in the immature mouse takes place as a result of rapid growth in end buds. These structures proliferate at the apex of elongating ducts and are responsible for penetration of the surrounding adipose stroma; by turning and branching, end buds give rise to the characteristic open pattern of the mammary ductal tree. We have used a variety of techniques to determine the cellular and structural basis for certain of these end bud activities, and now report the following. (1) The end bud tip is covered with a monolayer of epithelium, the "cap cells," which are characterized by a relative lack of intercellular junctions and other specialized features. (2) The cap cell layer extends along the end bud flank and neck regions where it is continuous with the myoepithelium which surrounds the subtending mature duct. A linear sequence of differentiative changes occur in the cap cells in this region as they progressively alter in shape and accumulate the cytological features of mature myoepithelium. Cap cells may therefore be defined as a stem cell population providing new myoepithelial cells for ductal morphogenesis and elongation. (3) Differentiation of cap cells into myoepithelium is associated with conspicuous changes in the basal lamina. At the tip, cap cells form a 104-nm lamina similar to that described in expanding mammary alveoli and in embryonic tissues. Along the end bud flanks the basal lamina is raised from the cell surface and extensively folded, resulting in a greatly thickened lamina, measuring as much as 1.4 microns. At the surface of the subtending ducts the lamina becomes structurally simplified and resembles that at the tip, but has a significantly greater thickness, averaging 130 nm. (4) The codifferentiation of myoepithelium and its basement membrane is associated with changes in the surrounding stroma. Undifferentiated mesenchymal-like cells attach to the surface of the basal lamina in the midportion of the end buds and become increasingly numerous in the neck region, forming a monolayer over the myoepithelial basal lamina. These stromal cells progressively differentiated into fibrocytes which participate in collagen fibrillogenesis and give rise to the fibrous components of the stroma surrounding the mature duct.  相似文献   

13.
Acidic and basic fibroblast growth factors (aFGF and bFGF), are both known to bind to extracellular matrix components, particularly proteoheparin sulfates, and to regulate in vitro proliferation, differentiation and morphology of cells of neuroectodermal and mesodermal origins. Their patterns of distribution were studied during mouse odontogenesis by means of indirect immunofluorescence and immunoperoxidase histochemistry on frozen fixed sections and after Bouin's fixative and paraffin embedding. Localization of aFGF on frozen fixed sections was observed in the oral epithelium, dental lamina and oral mesenchyme (day-12 of gestation), the stellate reticulum and oral epithelium (day-14), the stratum intermedium and at the basal and apical poles of preameloblasts at bell stage. After birth aFGF epitopes were localized within the predentin-dentin area, the stratum intermedium and at the secretory pole of ameloblasts. There was no staining with anti-aFGF antibodies after Bouin's fixative and paraffin embedding. In contrast, using this protocol, intense stainings were found with anti-bFGF antibodies predominantly within dental and peridental basement membranes and mesenchyme: staining of the dental basement membranes was transient (bud and cap stage) and discontinuous; a preferential concentration of bFGF epitopes in the condensed dental mesenchyme of incisors (cap stage) and the dental papillae mesenchymal cells of molars (bell stage) was observed in the posterior and the cervical part of tooth germs. An intense immunostaining of the stellate reticulum with anti-bFGF antibodies was also found on paraffin sections from bud to bell stage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
《Organogenesis》2013,9(1):14-21
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.  相似文献   

15.
The epidermis of Eisenia is covered by a cuticle and rests on a basement lamella. The cuticle, which is resistant to a variety of enzymes, is composed of non-striated, bundles of probable collagen fibers that are orthogonally oriented and are embedded in a proteoglycan matrix. The basement lamella consists of striated collagen fibers with a 560 Å major periodicity. Proximity and morphology suggest that the epidermis may contribute to both the cuticle and the basement lamella — that is, the single tissue may synthesize at least two types of collagen. The epidermis is a pseudostratified epithelium containing three major cell types (columnar, basal and gland) and a rare fourth type with apical cilia. The esophagus is lined by a simple cuticulated epithelium composed predominantly of a single cell type, which resembles the epidermal columnar cell. Rare gland cells occur in the esophageal epithelium, but basal cells are lacking.  相似文献   

16.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

17.
Development of the secondary palate in Swiss white mouse embroyos was studied from age nine-and-one-half days in utero to the stage of mesenchymal coalescence in the secondary palate (approximately fifteen-and-one-half days). The greatest changes observed occur in the mesenchyme. At early stages, mesenchymal cells underlying oral ectoderm of the head are few and only occasionally contact the ectoderm. Electron micrographs show large intercellular spaces between the ectodermal cells. As embryogenesis continues, the mesenchymal cells become more numerous, closer to each other and closer to the epithelium. Just prior to horizontal transposition of shelves, the mesenchymal cells spread farther from each other and from the palatal epithelium and epithelium of the palatal tip becomes stretched. Ultrastructurally the intercellular spaces between epithelial cells of the palate tip have become much smaller. Some mitochondria in some epithelial cells are swollen and have clear matrices and distorted cristae. The shelves become horizontal and meet in the midpalate. Cells with degeneration bodies are seen in the epithelial seam. The seam undergoes autolysis and is replaced by mesenchyme. The morphological changes described, particularly in the mesenchyme, may play an important role in determining the effect of various teratogens at different stages of palatal development. The changes in both mesenchyme and epithelial cells in the later stages may constitute part of the process of preparing shelves for fusion as postulated by Pourtois ('66).  相似文献   

18.
Summary The ectodermal-mesenchymal interspace of the chick leg bud was studied at stages leading to the formation of the apical ectodermal ridge (A.E.R.) (stages 14 to 19 HH), using scanning and transmission electron microscopy. The main findings were: 1. a continuous basal lamina under the ectoderm; 2. extracellular fibrils interconnecting the basal lamina and mesenchymal cell processes; 3. an increase in the number of the fibrils during these stages, with the highest number under the A.E.R.; 4. branching mesenchymal cell processes that spread over the basal lamina, making contact with it in all stages. The morphology of the interspace and the changes in it suggest that extracellular material may be significant in the ectodermal-mesenchymal interactions in the limb bud.  相似文献   

19.
Summary The phyllobranchiate gills of the green shore crab Carcinus maenas have been examined histologically and ultrastructurally. Each gill lamella is bounded by a chitinous cuticle. The apical surface of the branchial epithelium contacts this cuticle, and a basal lamina segregates the epithelium from an intralamellar hemocoel. In animals acclimated to normal sea water, five epithelial cell types can be identified in the lamellae of the posterior gills: chief cells, striated cells, pillar cells, nephrocytes, and glycocytes. Chief cells are the predominant cells in the branchial epithelium. They are squamous or low cuboidal and likely play a role in respiration. Striated cells, which are probably involved in ionoregulation, are also squamous or low cuboidal. Basal folds of the striated cells contain mitochondria and interdigitate with the bodies and processes of adjacent cells. Pillar cells span the hemocoel to link the proximal and distal sides of a lamella. Nephrocytes are large, spherical cells with voluminous vacuoles. They are rimmed by foot processes or pedicels and frequently associate with the pillar cells. Glycocytes are pleomorphic cells packed with glycogen granules and multigranular rosettes. The glycocytes often mingle with the nephrocytes. Inclusion of the nephrocytes and glycocytes as members of the branchial epithelium is justified by their participation in intercellular junctions and their position internal to the epithelial basal lamina.  相似文献   

20.
The tissue environment within which taste bud cells develop has not been wholly elaborated. Previous studies of taste bud development in vertebrates, including the avian chick, have suggested that taste bud cells could arise from one, or several tissue sources (e.g. crest-mesenchyme, local ectoderm or endoderm). Thus, molecular markers which are present in gemmal as well as interfacing (peribud epithelium; mesenchyme-epithelium) regions, and their degree of expression during stages of taste bud development, are of special interest. The intermediate filament protein, vimentin, occurs in mesenchymal and mesodermally-derived (e.g. endothelial, fibroblast) cells as well as highly proliferating epithelium (e.g. tumors). The present study in chick gustatory tissue utilized antibodies against vimentin and the avidin-biotin-peroxidase technique to evaluate vimentin immunoreactivity (IR) within a timeframe which includes: 1) early stages of the taste bud primordium [embryonic days (E)17-E18)]; 2) the beginning of an accelerated bud cell proliferation at the time of initial, taste bud pore opening [around E19]; 3) attaining the adult complement of taste buds [around posthatch (H) day 1], and 4) completed organogenesis (H 17). During this time span, vimentin-IR was characterized in a region including and sometimes bridging taste bud and subepithelial connective tissue, whereas non-gustatory surrounding epithelium and salivary glands were vimentin-immuno-negative. Intragemmally, the proportion of vimentin-IR cells as related to total taste bud cells peaked at E19. These results indicate that vimentin expression, in part, is related to the onset of taste bud cell proliferation and suggest that mesenchyme could be one source of taste bud cells. Secondly, fibronectin, an extracellular matrix component of the epithelial basement membrane interface with mesenchyme, was expressed at or near the apical surfaces of taste bud cells projecting into the bud lumen, and in the basal gemmal region suggesting the possible role of fibronectin as a chemotactic anchor for differentiating and migrating taste bud receptor cells. Lastly, neuron-specific enolase-IR indicates that axonal varicosities are already present intragemmally at E17-E18, that is, during the incipient period of identifiable taste bud primordia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号