首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show that these mutants are phenotypically indistinguishable from the previously described cop/det/fus mutants of other CSN subunits. However, we also show that these mutants retain the CSN complex (lacking CSN5), and this finding is in contrast with the previously described CSN subunit mutants, which lack the CSN complex. We therefore conclude that loss of CSN5 as part of CSN is sufficient to cause the cop/det/fus mutant phenotype. Furthermore, we show that mutants defective in CSN5 as well as mutants defective in CSN are unable to deneddylate the Arabidopsis cullins AtCUL1, AtCUL3A, and AtCUL4. Because these are representative cullin subunits of the three cullin-containing E3 families present in Arabidopsis, we postulate that the cop/det/fus mutant phenotype may be the result of the defects caused by impaired CSN5-dependent deneddylation of cullin-containing E3s.  相似文献   

2.
The COP9 signalosome (CSN) is a conserved, multisubunit complex first identified as a developmental regulator in plants. Gene inactivation of single CSN subunits results in early embryonic lethality in mice, indicating that the CSN is essential for mammalian development. The pleiotropic function of the CSN may be related to its ability to remove the ubiquitin-like peptide Nedd8 from cullin-RING ubiquitin ligases, such as the SCF complex, and therefore regulate their activity. However, the mechanism of CSN regulatory action on cullins has been debated, since, paradoxically, the CSN has an inhibitory role in vitro, while genetic evidence supports a positive regulatory role in vivo. We have targeted expression of CSN subunits 4 and 5 in human cells by lentivirus-mediated small hairpin RNA delivery. Down-regulation of either subunit resulted in disruption of the CSN complex and in Cullin1 hyperneddylation. Functional consequences of CSN down-regulation were decreased protein levels of Skp2, the substrate recognition subunit of SCF(Skp2), and stabilization of a Skp2 target, the cyclin-dependent kinase inhibitor p27(Kip1). CSN down-regulation caused an impairment in cell proliferation, which could be partially reversed by suppression of p27(Kip1). Moreover, restoring Skp2 levels in CSN-deficient cells recovered cell cycle progression, indicating that loss of Skp2 in these cells plays an important role in their proliferation defect. Our data indicate that the CSN is necessary to ensure the assembly of a functional SCF(Skp2) complex and therefore contributes to cell cycle regulation of human cells.  相似文献   

3.
The COP9 signalosome (CSN) is a conserved protein complex with homologies to the lid subcomplex of the 26S proteasome. It promotes cleavage of the Nedd8 conjugate (deneddylation) from the cullin component of SCF ubiquitin ligases. We provide evidence that cullin neddylation and deneddylation is highly dynamic, that its equilibrium can be effectively modulated by CSN, and that neddylation allows Cul1 to form larger protein complexes. CSN2 integrates into the CSN complex via its C-terminal region and its N-terminal half region is necessary for direct interaction with Cul1. The polyclonal antibodies against CSN2 but not other CSN subunits cause accumulation of neddylated Cul1/Cul2 in HeLa cell extract, indicating that CSN2 is essential in cullin deneddylation. Further, CSN inhibits ubiquitination and degradation of the cyclin-dependent kinase inhibitor p27(kip1) in vitro. Microinjection of the CSN complex impeded the G1 cells from entering the S phase. Moreover, anti-CSN2 antibodies negate the CSN-dependent p27 stabilization and the G1/S blockage, suggesting that these functions require the deneddylation activity. We conclude that CSN inhibits SCF ubiquitin ligase activity in targeting p27 proteolysis and negatively regulates cell cycle at the G1 phase by promoting deneddylation of Cul1.  相似文献   

4.
5.
Csn2 (Trip15/Cops2/Alien) encodes the second subunit of the COP9 signalosome (CSN), an eight-subunit heteromeric complex homologous to the lid subcomplex of the 26S proteasome. CSN is a regulator of SCF (Skp1-cullin-F-box protein)ubiquitin ligases, mostly through the enzymatic activity that deconjugates the ubiquitin-like protein Nedd8 from the SCF Cul1 component. In addition, CSN associates with protein kinase activities targeting p53, c-Jun, and IkappaB for phosphorylation. Csn2 also interacts with and regulates a subset of nuclear hormone receptors and is considered a novel corepressor. We report that targeted disruption of Csn2 in mice caused arrest of embryo development at the peri-implantation stage. Csn2(-/-) blastocysts failed to outgrow in culture and exhibited a cell proliferation defect in inner cell mass, accompanied by a slight decrease in Oct4. In addition, lack of Csn2 disrupted the CSN complex and resulted in a drastic increase in cyclin E, supporting a role for CSN in cooperating with the SCF-ubiquitin-proteasome system to regulate protein turnover. Furthermore, Csn2(-/-) embryos contained elevated levels of p53 and p21, which may contribute to premature cell cycle arrest of the mutant.  相似文献   

6.
The COP9 signalosome (CSN) is a multiprotein complex of the ubiquitin-proteasome pathway. CSN is typically composed of eight subunits, each of which is related to one of the eight subunits that form the lid of the 26S proteasome regulatory particle. CSN was first identified in Arabidopsis where it is required for the repression of photomorphogenic seedling development in the dark. CSN or CSN-related complexes have by now been reported from most eukaryotic model organisms and CSN has been implicated in a vast array of biological processes. It is widely accepted that CSN directly interacts with cullin-containing E3 ubiquitin ligases, and that CSN is required for their proper function. The requirement of CSN for proper E3 function may at least in part be explained by the observation that CSN subunit 5 (CSN5) is the isopeptidase that deconjugates the essential ubiquitin-like Nedd8 modification from the E3 cullin subunit. In addition to its interaction with E3s, CSN may also regulate proteolysis by its association with protein kinases and deubiquitylating enzymes. This review provides a summary of the role of CSN in regulating protein degradation and in eukaryotic development.  相似文献   

7.
The SKP1-Cullin/Cdc53-F-box protein ubiquitin ligases (SCF) target many important regulatory proteins for degradation and play vital roles in diverse cellular processes. In Arabidopsis there are 11 Cullin members (AtCUL). AtCUL1 was demonstrated to assemble into SCF complexes containing COI1, an F-box protein required for response to jasmonates (JA) that regulate plant fertility and defense responses. It is not clear whether other Cullins also associate with COI1 to form SCF complexes, thus, it is unknown whether AtCUL1, or another Cullin that assembles into SCF(COI1) (even perhaps two or more functionally redundant Cullins), plays a major role in JA signaling. We present genetic and physiological data to directly demonstrate that AtCUL1 is necessary for normal JA responses. The homozygous AtCUL1 mutants axr6-1 and axr6-2, the heterozygous mutants axr6/AXR6, and transgenic plants expressing mutant AtCUL1 proteins containing a single amino acid substitution from phenylalanine-111 to valine, all exhibit reduced responses to JA. We also demonstrate that ax6 enhances the effect of coi1 on JA responses, implying a genetic interaction between COI1 and AtCUL1 in JA signaling. Furthermore, we show that the point mutations in AtCUL1 affect the assembly of COI1 into SCF, thus attenuating SCF(COI1) formation.  相似文献   

8.
Wang J  Hu Q  Chen H  Zhou Z  Li W  Wang Y  Li S  He Q 《PLoS genetics》2010,6(12):e1001232
The Cop9 signalosome (CSN) is an evolutionarily conserved multifunctional complex that controls ubiquitin-dependent protein degradation in eukaryotes. We found seven CSN subunits in Neurospora crassa in a previous study, but only one subunit, CSN-2, was functionally characterized. In this study, we created knockout mutants for the remaining individual CSN subunits in N. crassa. By phenotypic observation, we found that loss of CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, or CSN-7 resulted in severe defects in growth, conidiation, and circadian rhythm; the defect severity was gene-dependent. Unexpectedly, CSN-3 knockout mutants displayed the same phenotype as wild-type N. crassa. Consistent with these phenotypic observations, deneddylation of cullin proteins in csn-1, csn-2, csn-4, csn-5, csn-6, or csn-7 mutants was dramatically impaired, while deletion of csn-3 did not cause any alteration in the neddylation/deneddylation state of cullins. We further demonstrated that CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, and CSN-7, but not CSN-3, were essential for maintaining the stability of Cul1 in SCF complexes and Cul3 and BTB proteins in Cul3-BTB E3s, while five of the CSN subunits, but not CSN-3 and CSN-5, were also required for maintaining the stability of SKP-1 in SCF complexes. All seven CSN subunits were necessary for maintaining the stability of Cul4-DDB1 complexes. In addition, CSN-3 was also required for maintaining the stability of the CSN-2 subunit and FWD-1 in the SCF(FWD-1) complex. Together, these results not only provide functional insights into the different roles of individual subunits in the CSN complex, but also establish a functional framework for understanding the multiple functions of the CSN complex in biological processes.  相似文献   

9.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

10.
Xu L  Liu F  Lechner E  Genschik P  Crosby WL  Ma H  Peng W  Huang D  Xie D 《The Plant cell》2002,14(8):1919-1935
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.  相似文献   

11.
12.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   

13.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.  相似文献   

14.
15.
The COP9 signalosome (CSN) is an eight-subunit complex that regulates multiple signaling and cell cycle pathways. Here we link the CSN to the degradation of Cyclin E, which promotes the G1-S transition in the cell cycle and then is rapidly degraded by the ubiquitin-proteasome pathway. Using CSN4 and CSN5/Jab1 mutants, we show that the CSN acts during Drosophila oogenesis to remove Nedd8 from Cullin1, a subunit of the SCF ubiquitin ligase. Overexpression of Cyclin E causes similar defects as mutations in CSN or SCF(Ago) subunits: extra divisions or, in contrast, cell cycle arrest and polyploidy. Because the phenotypes are so similar and because CSN and Cyclin E mutations reciprocally suppress each other, Cyclin E appears to be the major target of the CSN during early oogenesis. Genetic interactions among CSN, SCF, and proteasome subunits further confirm CSN involvement in ubiquitin-mediated Cyclin E degradation.  相似文献   

16.
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.  相似文献   

17.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

18.
The mammalian Int-6 protein has been characterized as a subunit of the eIF3 translation initiation factor and also as a transforming protein when its C-terminal part is deleted. It includes a protein domain, which also exists in various subunits of eIF3, of the 26S proteasome and of the COP9 signalosome (CSN). By performing a two-hybrid screen with Int-6 as bait, we have isolated subunits belonging to all three complexes, namely eIF3-p110, Rpt4, CSN3 and CSN6. The results of transient expression experiments in COS7 cells confirmed the interaction of Int-6 with Rpt4, CSN3 and CSN6, but also showed that Int-6 is able to bind another subunit of the CSN: CSN7a. Immunoprecipitation experiments performed with the endogenous proteins showed that Int-6 binds the entire CSN, but in low amount, and also that Int-6 is associated with the 26S proteasome. Taken together these results show that the Int-6 protein can bind the three complexes with various efficiencies, possibly exerting a regulatory activity in both protein translation and degradation.  相似文献   

19.
The COP9 signalosome (CSN) is a eukaryotic protein complex, which regulates a wide range of biological processes mainly through modulating the cullin ubiquitin E3 ligases in the ubiquitin-proteasome pathway. The CSN possesses a highly conserved deneddylase activity that centers at the JAMM motif of the Csn5 subunit but requires other subunits in a complex assembly. The classic CSN is composed of 8 subunits (Csn1-8), yet in several Ascomycota, the complex is smaller and lacks orthologs for a few CSN subunits, but nevertheless contains a conserved Csn5. This feature makes yeast a powerful model to determine the minimal assemblage required for deneddylation activity. Here we report, that Csi1, a diverged S. cerevisiae CSN subunit, displays significant homology with the carboxyl terminal domain of the canonical Csn6, but lacks the amino terminal MPN(-) domain. Through the comparative and experimental analyses of the budding yeast and the mammalian CSNs, we demonstrate that the MPN(-) domain of the canonical mouse Csn6 is not part of the CSN deneddylase core. We also show that the carboxyl domain of Csn6 has an indispensable role in maintaining the integrity of the CSN complex. The CSN complex assembled with the carboxyl fragment of Csn6, despite its lack of an MPN(-) domain, is fully active in deneddylation of cullins. We propose that the budding yeast Csi1 is a functional equivalent of the canonical Csn6, and thus the composition of the CSN across phyla is more conserved than hitherto appreciated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号