共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Dessau M Halimi Y Erez T Chomsky-Hecht O Chamovitz DA Hirsch JA 《The Plant cell》2008,20(10):2815-2834
The COP9 Signalosome (CSN) is a multiprotein complex that was originally identified in Arabidopsis thaliana as a negative regulator of photomorphogenesis and subsequently shown to be a general eukaryotic regulator of developmental signaling. The CSN plays various roles, but it has been most often implicated in regulating protein degradation pathways. Six of eight CSN subunits bear a sequence motif called PCI. Here, we report studies of subunit 7 (CSN7) from Arabidopsis, which contains such a motif. Our in vitro and structural results, based on 1.5 A crystallographic data, enable a definition of a PCI domain, built from helical bundle and winged helix subdomains. Using functional binding assays, we demonstrate that the PCI domain (residues 1 to 169) interacts with two other PCI proteins, CSN8 and CSN1. CSN7 interactions with CSN8 use both PCI subdomains. Furthermore, we show that a C-terminal tail outside of this PCI domain is responsible for association with the non-PCI subunit, CSN6. In vivo studies of transgenic plants revealed that the overexpressed CSN7 PCI domain does not assemble into the CSN, nor can it complement a null mutation of CSN7. However, a CSN7 clone that contains the PCI domain plus part of the CSN6 binding domain can complement the null mutation in terms of seedling viability and photomorphogenesis. These transgenic plants, though, are defective in adult growth, suggesting that the CSN7 C-terminal tail plays additional functional roles. Together, the findings have implications for CSN assembly and function, highlighting necessary interactions between subunits. 相似文献
3.
The COP9 signalosome (CSN) is a multiprotein complex that plays a critical role in diverse cellular and developmental processes in various eukaryotic organisms. Despite of its significance, current understanding of the biological functions and regulatory mechanisms of the CSN complex is still very limited. To unravel these molecular mechanisms, we have performed a comprehensive proteomic analysis of the human CSN complex using a new purification method and quantitative mass spectrometry. Purification of the human CSN complex from a stable 293 cell line expressing N-terminal HBTH-tagged CSN5 subunit was achieved by high-affinity streptavidin binding with TEV cleavage elution. Mass spectrometric analysis of the purified CSN complex has revealed the identity of its composition as well as N-terminal modification and phosphorylation of the CSN subunits. N-terminal modifications were determined for seven subunits, six of which have not been reported previously, and six novel phosphorylation sites were also identified. Additionally, we have applied the newly developed MAP-SILAC and PAM-SILAC methods to decipher the dynamics of the human CSN interacting proteins. A total of 52 putative human CSN interacting proteins were identified, most of which are reported for the first time. In comparison to PAM-SILAC results, 20 proteins were classified as stable interactors, whereas 20 proteins were identified as dynamic ones. This work presents the first comprehensive characterization of the human CSN complex by mass spectrometry-based proteomic approach, providing valuable information for further understanding of CSN complex structure and biological functions. 相似文献
4.
Zhang H Gao ZQ Wang WJ Liu GF Shtykova EV Xu JH Li LF Su XD Dong YH 《FEBS letters》2012,586(8):1147-1153
The COP9 signalosome (CSN) is a multiprotein complex containing eight subunits and is highly conserved from fungi to human. CSN is proposed to widely participate in many physiological processes, including protein degradation, DNA damage response and signal transduction. Among those subunits, only CSN5 and CSN6 belong to JAMM family. CSN5 possesses isopeptidase activity, but CSN6 lacks this ability. Here we report the 2.5 Å crystal structure of MPN domain from Drosophila melanogaster CSN6. Structural comparison with other MPN domains, along with bioinformation analysis, suggests that MPN domain from CSN6 may serve as a scaffold instead of a metalloprotease.Structured summary of protein interactionsCSN6 and CSN6 bind by x-ray crystallography (View interaction)CSN6 and CSN6 bind by x ray scattering (View interaction) 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2041-2049
The COP9 complex (signalosome) is a known regulator of the proteasome/ubiquitin pathway. Furthermore it regulates the activity of the cullin-RING ligase (CRL) families of ubiquitin E3-complexes. Besides the CRL family, the anaphase-promoting complex (APC/C) is a major regulator of the cell cycle. To investigate a possible connection between both complexes we assessed interacting partners of COP9 using an in vivo protein-protein interaction assay. Hereby, we were able to show for the first time that CSN2, a subunit of the COP9 signalosome, interacts physically with APC/C. Furthermore, we detected a functional influence of the COP9 complex regarding the stability of several targets of the APC/C. Consistent with these data we showed a genetic instability of cells over-expressing CSN2. 相似文献
6.
Halimi Y Dessau M Pollak S Ast T Erez T Livnat-Levanon N Karniol B Hirsch JA Chamovitz DA 《Plant molecular biology》2011,77(1-2):77-89
The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis. 相似文献
7.
The conserved COP9 signalosome (CSN) multiprotein complex is located at the interface between cellular signaling, protein modification, life span and the development of multicellular organisms. CSN is required for light-controlled responses in filamentous fungi. This includes the circadian rhythm of Neurospora crassa or the repression of sexual development by light in Aspergillus nidulans. In contrast to plants and animals, CSN is not essential for fungal viability. Therefore fungi are suitable models to study CSN composition, activity and cellular functions and its role in light controlled development. 相似文献
8.
The COP9 signalosome, once defined as a repressor complex of light-activated development in Arabidopsis, has recently been found in humans and is probably present in most multicellular organisms. The COP9 signalosome is closely related to the lid sub-complex of the 26S proteasome in structural composition and probably shares a common evolutionary ancestor. A multifaceted role of the COP9 signalosome in cell-signaling processes is hinted at by its associated novel kinase activity, as well as the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. The molecular genetic studies in Arabidopsis suggest that the complex functions as part of a highly conserved regulatory network, whose physiological role in animals remains to be determined. 相似文献
9.
COP9 signalosome subunit 8 is required for postnatal hepatocyte survival and effective proliferation
Studies using lower organisms and cultured mammalian cells have revealed that the COP9 signalosome (CSN) has important roles in multiple cellular processes. Conditional gene targeting was recently used to study CSN function in murine T-cell development and activation. Using the Cre-loxP system, here we have achieved postnatal hepatocyte-restricted knockout of the csn8 gene (HR-Csn8KO) in mice. The protein abundance of other seven CSN subunits was differentially downregulated by HR-Csn8KO and the deneddylation of all cullins examined was significantly impaired. Moreover, HR-Csn8KO-induced massive hepatocyte apoptosis and evoked extensive reparative responses in the liver, including marked intralobular proliferation of biliary lineage cells and trans-differentiation and proliferation of the oval cells. However, division of pre-existing hepatocytes was significantly diminished in HR-Csn8KO livers. These findings indicate that Csn8 is essential to the ability of mature hepatocytes to proliferate effectively in response to hepatic injury. The histopathological examinations revealed striking hepatocytomegaly in Csn8-deficient livers. The hepatocyte nuclei were dramatically enlarged and pleomorphic with hyperchromasia and prominent nucleoli, consistent with dysplasia or preneoplastic cellular alteration in HR-Csn8KO mice at 6 weeks. Pericellular and perisinusoid fibrosis with distorted architecture was also evident at 6 weeks. It is concluded that CSN8/CSN is essential to postnatal hepatocyte survival and effective proliferation. 相似文献
10.
da Silva Correia J Miranda Y Leonard N Ulevitch RJ 《The Journal of biological chemistry》2007,282(17):12557-12565
The COP9 signalosome is a large multiprotein complex that consists of eight subunits termed CSN1-CSN8. The diverse functions of the COP9 complex include regulation of several important intracellular pathways, including the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. Nod1 is also thought to be an important cytoplasmic receptor involved in innate immune responses. It detects specific motifs of bacterial peptidoglycan, and this results in activation of multiple signaling pathways and changes in cell function. In this report, we performed a yeast two-hybrid screening and discovered that Nod1 interacts with several components of the COP9 signalosome through its CARD domain. Moreover, we observed that activation of the Nod1 apoptotic pathway leads to specific cleavage of the subunit CSN6. This cleavage is concomitant with caspase processing and generates a short amino-terminal peptide of 3 kDa. A complete inhibition of this cleavage was achieved in the presence of the broad spectrum pharmacological inhibitor of apoptosis, Z-VAD. Furthermore, overexpression of CLARP, a specific caspase 8 inhibitor, completely blocked cleavage of CSN6. Taken together, these results suggest a critical role of caspase 8 in the processing of CSN6. Moreover, these findings suggest that CSN6 cleavage may result in modifications of functions of the COP9 complex that are involved in apoptosis. 相似文献
11.
Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. 下载免费PDF全文
The pleiotropic constitutive photomorphogenic/deetiolated/fusca (cop/det/fus) mutants of Arabidopsis exhibit features of light-grown seedlings when grown in the dark. Cloning and biochemical analysis of COP9 have revealed that it is a component of a multiprotein complex, the COP9 signalosome (previously known as the COP9 complex). Here, we compare the immunoaffinity and the biochemical purification of the COP9 signalosome from cauliflower and confirm its eight-subunit composition. Molecular cloning of subunit 4 of the complex revealed that it is a proteasome-COP9 complex-eIF3 domain protein encoded by a gene that maps to chromosome 5, near the chromosomal location of the cop8 and fus4 mutations. Genetic complementation tests showed that the cop8 and fus4 mutations define the same locus, now designated as COP8. Molecular analysis of the subunit 4-encoding gene in both cop8 and fus4 mutants identified specific molecular lesions, and overexpression of the subunit 4 cDNA in a cop8 mutant background resulted in complete rescue of the mutant phenotype. Thus, we conclude that COP8 encodes subunit 4 of the COP9 signalosome. Examination of possible molecular interactions by using the yeast two-hybrid assay indicated that COP8 is capable of strong self-association as well as interaction with COP9, FUS6/COP11, FUS5, and Arabidopsis JAB1 homolog 1, the latter four proteins being previously defined subunits of the Arabidopsis COP9 signalosome. A comparative sequence analysis indicated that COP8 is highly conserved among multicellular eukaryotes and is also similar to a subunit of the 19S regulatory particle of the 26S proteasome. 相似文献
12.
Dohmann EM Levesque MP De Veylder L Reichardt I Jürgens G Schmid M Schwechheimer C 《Development (Cambridge, England)》2008,135(11):2013-2022
The COP9 signalosome (CSN) is required for the full activity of cullin-RING E3 ubiquitin ligases (CRLs) in eukaryotes. CSN exerts its function on CRLs by removing the ubiquitin-related NEDD8 conjugate from the cullin subunit of CRLs. CSN seems, thereby, to control CRL disassembly or CRL subunit stability. In Arabidopsis thaliana, loss of CSN function leads to constitutive photomorphogenic (cop) seedling development and a post-germination growth arrest. The underlying molecular cause of this growth arrest is currently unknown. Here, we show that Arabidopsis csn mutants are delayed in G2 phase progression. This cell cycle arrest correlates with the induction of the DNA damage response pathway and is suggestive of the activation of a DNA damage checkpoint. In support of this hypothesis, we detected gene conversion events in csn mutants that are indicative of DNA double-strand breaks. DNA damage is also apparent in mutants of the NEDD8 conjugation pathway and in mutants of the E3 ligase subunits CULLIN4, COP1 and DET1, which share phenotypes with csn mutants. In summary, our data suggest that Arabidopsis csn mutants undergo DNA damage, which might be the cause of the delay in G2 cell cycle progression. 相似文献
13.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation. 相似文献
14.
15.
Esther Mirjam Natascha Dohmann Carola Nill Claus Schwechheimer 《European journal of cell biology》2010,89(2-3):163-168
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with an essential role in the development of higher eukaryotes. CSN deconjugates the ubiquitin-related modifier NEDD8 from the cullin subunit of cullin-RING type E3 ubiquitin ligases (CRLs), and CSN-mediated cullin deneddylation is required for full CRL activity. Although several plant E3 CRL functions have been shown to be compromised in Arabidopsis csn mutants, none of these functions have so far been shown to limit growth in these mutants. Here, we examine the role of CSN in the context of the E3 ubiquitin ligase SCFSLEEPY1 (SLY1), which promotes gibberellic acid (GA)-dependent responses in Arabidopsis thaliana. We show that csn mutants are impaired in GA- and SCFSLY1-dependent germination and elongation growth, and we show that these defects correlate with an accumulation and reduced turnover of an SCFSLY1-degradation target, the DELLA protein REPRESSOR-OF-ga1-3 (RGA). Genetic interaction studies between csn mutants and loss-of-function alleles of RGA and its functional homologue GIBBERELLIC ACID INSENSITIVE (GAI) further reveal that RGA and GAI repress defects of germination in strong csn mutants. In addition, we find that these two DELLA proteins are largely responsible for the elongation defects of a weak csn5 mutant allele. We thus conclude that an impairment of SCFSLY1 is at least in part causative for the germination and elongation defects of csn mutants, and suggest that DELLA proteins are major growth repressors in these mutants. 相似文献
16.
The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development 下载免费PDF全文
The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation. 相似文献
17.
18.
Stotland A Pruitt L Webster P Wolkowicz R 《Omics : a journal of integrative biology》2012,16(6):312-319
The COP9 Signalosome (CSN) is a highly conserved eight subunit protein complex associated with a wide range of essential biological functions in eukaryotic cells, and directly involved in processes including deneddylation, phosphorylation, and ubiquitination. Despite its significant role, very few studies have been undertaken to reveal the interactions between the CSN and its binding partners, and none in human T cells. Here we present a purification method for the CSN and binding proteins via the Streptavidin-Binding Peptide (SBP) fused to CSN Subunit 1 (CSN1). Using this method, coupled with liquid chromatography-mass spectrometry analysis, we identified all eight subunits of the CSN, as well as expected and putative novel binding partners such as a tumor suppressor under the control of Cullin4a-ligase complex; Neurofibromin 2 (Merlin). This work presents a method for fast, reliable, and specific affinity-based purification of a protein complex from a nonadherent cell line. The purification of the CSN and binding partners from T cells can elucidate the roles of CSN in a cell type where it has never been studied before. This proteomic-based approach can broaden our understanding of the functions of the CSN in contexts such as viral-host interactions or immune activation in their natural milieu. 相似文献
19.
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material). 相似文献
20.
COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast 下载免费PDF全文
Yan J Walz K Nakamura H Carattini-Rivera S Zhao Q Vogel H Wei N Justice MJ Bradley A Lupski JR 《Molecular and cellular biology》2003,23(19):6798-6808
Csn3 (Cops3) maps to the mouse chromosome 11 region syntenic to the common deletion interval for the Smith-Magenis syndrome, a contiguous gene deletion syndrome. It encodes the third subunit of an eight-subunit protein complex, the COP9 signalosome (CSN), which controls a wide variety of molecules of different functions. Mutants of this complex caused lethality at early development of both plants and Drosophila melanogaster. CSN function in vivo in mammals is unknown. We disrupted the murine Csn3 gene in three independent ways with insertional vectors, including constructing a approximately 3-Mb inversion chromosome. The heterozygous mice appeared normal, although the protein level was reduced. Csn3(-/-) embryos arrested after 5.5 days postcoitum (dpc) and resorbed by 8.5 dpc. Mutant embryos form an abnormal egg cylinder which does not gastrulate. They have reduced numbers of epiblast cells, mainly due to increased cell death. In the Csn3(-/-) mice, subunit 8 of the COP9 complex was not detected by immunohistochemical techniques, suggesting that the absence of Csn3 may disrupt the entire COP9 complex. Therefore, Csn3 is important for maintaining the integrity of the COP9 signalosome and is crucial to maintain the survival of epiblast cells and thus the development of the postimplantation embryo in mice. 相似文献