首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.  相似文献   

2.
The origin recognition complex (ORC) is a six-subunit, ATP-regulated, DNA binding protein that is required for the formation of the prereplicative complex (pre-RC), an essential replication intermediate formed at each origin of DNA replication. In this study, we investigate the mechanism of ORC function during pre-RC formation and how ATP influences this event. We demonstrate that ATP hydrolysis by ORC requires the coordinate function of the Orc1 and Orc4 subunits. Mutations that eliminate ORC ATP hydrolysis do not support cell viability and show defects in pre-RC formation. Pre-RC formation involves reiterative loading of the putative replicative helicase, Mcm2-7, at the origin. Importantly, preventing ORC ATP hydrolysis inhibits this repeated Mcm2-7 loading. Our findings indicate that ORC is part of a helicase-loading molecular machine that repeatedly assembles Mcm2-7 complexes onto origin DNA and suggest that the assembly of multiple Mcm2-7 complexes plays a critical role in origin function.  相似文献   

3.
Loading of the Mcm2-7 DNA replicative helicase onto origin-proximal DNA is a critical and tightly regulated event during the initiation of eukaryotic DNA replication. The resulting protein-DNA assembly is called the prereplicative complex (pre-RC), and its formation requires the origin recognition complex (ORC), Cdc6, Cdt1, and ATP. ATP hydrolysis by ORC is required for multiple rounds of Mcm2-7 loading. Here, we investigate the role of ATP hydrolysis by Cdc6 during pre-RC assembly. We find that Cdc6 is an ORC- and origin DNA-dependent ATPase that functions at a step preceding ATP hydrolysis by ORC. Inhibiting Cdc6 ATP hydrolysis stabilizes Cdt1 on origin DNA and prevents Mcm2-7 loading. In contrast, the initial association of Mcm2-7 with the other pre-RC components does not require ATP hydrolysis by Cdc6. Importantly, these coordinated yet distinct functions of ORC and Cdc6 ensure the correct temporal and spatial regulation of pre-RC formation.  相似文献   

4.
Regulation of replication licensing by acetyltransferase Hbo1   总被引:1,自引:0,他引:1       下载免费PDF全文
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.  相似文献   

5.
Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Mcm10 has recently been found to play a crucial role in multiple steps of the DNA replication initiation process in eukaryotes. Here, we have examined the role of Mcm10 in assembling initiation factors at a well-characterized yeast replication origin, ARS1. We find that the pre-replication complex (pre-RC) components Cdc6 and Mcm7 associate with ARS1 in the mcm10-1 mutant, suggesting that establishment of the pre-RC is not compromised in this mutant. Association of Cdc45 with ARS1 is reduced in the mcm10-1 mutant, suggesting that Mcm10 is involved in recruiting Cdc45 to the pre-RC. We find that overexpression of either Mcm10-1 or Cdc45 suppresses the growth defect of mcm10-1, and that a physical interaction between Cdc45 and Mcm10 is disrupted in the mcm10-1 mutant. Our results show that interaction between the Mcm10 and Cdc45 proteins facilitates the recruitment of Cdc45 onto the ARS1 origin.  相似文献   

6.
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.  相似文献   

7.
Feng L  Hu Y  Wang B  Wu L  Jong A 《DNA and cell biology》2000,19(7):447-457
Saccharomyces cerevisiae Cdc6 plays an essential role in establishing and maintaining the prereplicative complex (pre-RC) by interacting with the origin recognition complex (ORC) and associating with chromatin origins. These interactions are required to load minichromosome maintenance proteins (MCMs) and other initiator proteins onto replication origins. Although the temperature-sensitive cdc6 mutant, cdc6-1, has been widely used for these studies, the molecular mechanism of the cdc6-1 mutation has been unclear. In this study, we have identified a base substitution at Gly260-->Asp, near the CDC-NTP motif. Using a chromatin immunoprecipitation assay (CHIP), we found that cdc6-1 fails to load Mcm5 onto the replication origins. Chromatin fractions were used to study Mcm5 binding in both the wildtype and mutant background. These studies indicated that Cdc6 is also involved in unloading Mcm5 from chromatin. Specifically, the cdc6-1 mutation protein, cdc6(G260D), which failed to load Mcm5 onto replication origins, also failed to unload the Mcm5 protein. Furthermore, the overexpression of wildtype CDC6 accelerated the unloading of Mcm5 from chromatin fractions. In the absence of functional Cdc6, the Mcm5 protein showed nonorigin binding to chromatin with the cell cycle arrested at the G1S phase transition. Our results suggested that the cdc6(G260D) mutant protein fails to assemble an operational replicative complex and that wildtype Cdc6 plays a role in preventing re-replication by controlling the unloading the MCMs from chromatin origins.  相似文献   

8.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading of six minichromosome maintenance (Mcm) proteins, Mcm2-7, onto origins. How Clb/Cdc28 kinases prevent pre-RC assembly is not understood. RESULTS: In living cells, the Mcm proteins were found to colocalize in a cell-cycle-regulated manner. Mcm2-4, 6 and 7 were concentrated in the nucleus in G1 phase, gradually exported to the cytoplasm during S phase, and excluded from the nucleus by G2 and M phase. Tagging any single Mcm protein with the SV40 nuclear localization signal made all Mcm proteins constitutively nuclear. In the absence of functional Cdc6, Clb/Cdc28 kinases were necessary and sufficient for efficient net nuclear export of a fusion protein between Mcm7 and the green fluorescent protein (Mcm7-GFP), whereas inactivation of these kinases at the end of mitosis coincided with the net nuclear import of Mcm7-GFP. In contrast, in the presence of functional Cdc6, which loads Mcm proteins onto chromatin, S-phase progression as well as Clb/Cdc28 kinases was required for Mcm-GFP export. CONCLUSIONS: We propose that Clb/Cdc28 kinases prevent pre-RC reassembly in part by promoting the net nuclear export of Mcm proteins. We further propose that Mcm proteins become refractory to this regulation when they load onto chromatin and must be dislodged by DNA replication before they can be exported. Such an arrangement could ensure that Mcm proteins complete their replication function before they are removed from the nucleus.  相似文献   

9.
The Mcm10 protein is essential for chromosomal DNA replication in eukaryotic cells. We purified the Saccharomyces cerevisiae Mcm10 (ScMcm10) and characterized its DNA binding properties. Electrophoretic mobility shift assays and surface plasmon resonance analysis showed that ScMcm10 binds stably to both double strand (ds) DNA and single strand (ss) DNA. On short DNA templates of 25 or 50 bp, surface plasmon resonance analysis showed a ∼1:1 stoichiometry of ScMcm10 to dsDNA. On longer dsDNA templates, however, multiple copies of ScMcm10 cooperated in the rapid assembly of a large, stable nucleoprotein complex. The amount of protein bound was directly proportional to the length of the DNA, with an average occupancy spacing of 21–24 bp. This tight spacing is consistent with a nucleoprotein structure in which ScMcm10 is aligned along the helical axis of the dsDNA. In contrast, the stoichiometry of ScMcm10 bound to ssDNA of 20–50 nucleotides was ∼3:1 suggesting that interaction with ssDNA induces the assembly of a multisubunit ScMcm10 complex composed of at least three subunits. The tight packing of ScMcm10 on dsDNA and the assembly of a multisubunit complex on ssDNA suggests that, in addition to protein-DNA, protein-protein interactions may be involved in forming the nucleoprotein complex. We propose that these DNA binding properties have an important role in (i) initiation of DNA replication and (ii) formation and maintenance of a stable replication fork during the elongation phase of chromosomal DNA replication.MCM10 is a ubiquitous, conserved gene essential for DNA replication in eukaryotes. It was first discovered in yeast genetic screens designed to detect mutants defective in DNA synthesis and minichromosome maintenance (1, 2). In vivo, Mcm10 associates with chromatin and chromosomal replication origins in human cells (hMcm10), Xenopus laevis (XMcm10), Schizosaccharomyces pombe (SpMcm10), and Saccharomyces cerevisiae (ScMcm10) (36). In S. cerevisiae, initiation of chromosomal replication occurs at multiple specific sites known as autonomously replicating sequences (ARSs)2 (7). Mutations in MCM10 enhance the loss rate of plasmids bearing specific ARSs (8), suggesting a function for ScMcm10 in initiation.In eukaryotic systems replication initiation is a cell cycle-regulated process characterized by a multistep sequential loading of ORC, Cdc6, Cdt1, and the Mcm2–7 complex onto the origin in G1 to form the pre-RC complex. Binding of ORC, Cdc6p, and Cdt1p to chromatin is a prerequisite for the recruitment of Mcm2–7 (9, 10). The next step in the assembly of the initiation replication apparatus in S. cerevisiae involves protein kinases (Cdc28 and Cdc7/Dbf4), and recruitment of Mcm10, Cdc45, and the GINS complex. The mechanism for targeting Mcm10 to replications origins is unknown. However, recent studies in S. cerevisiae have shown that Mcm10 and Mcm2–7 physically interact (6, 11). It is now believed that in late G1, chromatin-bound Mcm2–7 is responsible for the recruitment of Mcm10 presumably via protein-protein interactions (12). Prior studies in the Xenopus laevis system reached similar conclusions (4). Additional interactions of Mcm10 with other components of the pre-RC cannot be excluded (13).A key step in the initiation of replication is the local melting of an origin DNA sequence, which occurs at the G1/S transition and throughout the S phase. The mechanism of this essential DNA-melting process is not understood. There is no evidence in S. cerevisiae that the assembled pre-RC complex leads to the melting of an origin DNA sequence. This unwinding may occur only following the recruitment of Mcm10, raising the possibility that Mcm10 is a key component of the initiation machinery responsible for this process. Results of a study in the Xenopus egg extract system (4), which showed that omission of XMcm10 blocks unwinding of plasmid DNA and initiation of DNA replication, are consistent with this notion. An additional function of Mcm10 in initiation is in the recruitment of Cdc45 to replication origins, presumably via Mcm10-Cdc45 physical interactions (5, 14). Cdc45 is believed to be important for the activation of replication origins and the assembly of the replication elongation complex (15). Upon initiation of DNA replication, ScMcm10 moves from the origin to origin-proximal sequences suggesting that ScMcm10 associates with moving replication forks (12) and is consistent with the observation that elevated temperatures cause pausing of replication forks in a mcm10-1 ts mutant (8). Both ScMcm10 and SpMcm10 interact with DNA polymerase α supporting the notion that replication fork movement requires Mcm10. ScMcm10 and polymerase α form a complex on and off the DNA in vivo (12). In S. pombe, SpMcm10 stimulates the activity of polymerase α in vitro and associates with a primase activity (16, 17) that has not been reported in other eukaryotes (18).Previous studies with Mcm10 in other systems showed that Mcm10 binds DNA. Using a filter binding assay Fien and Hurwitz (16) reported that SpMcm10 from S. pombe binds well to ssDNA but barely interacts (20-fold lower affinity) with dsDNA. It has been suggested that binding of SpMcm10 to ssDNA is important for the recruitment of polymerase α (16). Recently, it has been reported that a DNA binding activity is also associated with XMcm10 protein from X. laevis. Measurements of fluorescence anisotropy were used to show binding of XMcm10 to short, 25-nucleotide-long oligonucleotides (18). These studies have shown that XMcm10 has similar affinities for ssDNA and dsDNA. Unlike SpMcm10, which harbors a single DNA-binding domain in the N-terminal half of the protein, XMcm10 seems to contain two distinct domains for binding DNA. The biological implication of having two DNA-binding domains is not clear.It appears that there are differences in the quaternary structure of Mcm10 from different organisms. Although SpMcm10 and XMcm10 may be a homodimer in solution (17, 18), a recent electron microscopy study suggested that human hMcm10 has a hexameric ring structure (19). The same study reported that hMcm10 interacts with ssDNA but failed to bind dsDNA. The differences in structure and DNA binding properties may reflect differences in the function of Mcm10 in various organisms as well as in the protein preparations.Here we report, for the first time, the characterization of the DNA binding properties of purified Mcm10 from S. cerevisiae. We show that ScMcm10 forms a stable complex with dsDNA and ssDNA. In addition, we demonstrate that dsDNA longer than 50 bp sustains oligomerization of ScMcm10. The number of ScMcm10 molecules bound is directly proportional to the size of the dsDNA, suggesting that ScMcm10 is tightly packed on the dsDNA, perhaps in a head to tail oligomeric structure. In contrast to a 25-bp-long dsDNA, which supports the binding of a single copy of ScMcm10, ssDNA containing only 20 nucleotides may sustain binding of as many as three copies of ScMcm10, suggesting that a ScMcm10 complex composed of at least 3 subunits assembles on ssDNA. We believe that these distinct binding properties to dsDNA and ssDNA are important for the ScMcm10 functions in initiation, formation of replication forks, and the maintenance of replication fork progression during chromosomal DNA replication.  相似文献   

10.
The eukaryotic minichromsome maintenance (Mcm) proteins (Mcm2–7) are evolutionally conserved from yeast to human. These proteins are essential for DNA replication and Mcm6 is one subunit of Mcm2–7 complex that serves as the replicative helicase in DNA replication. Cdt1 is a critical member of pre-replicative complex (pre-RC), which directs the chromatin loading of Mcm2–7 complex. The Cdt1 binding domain (CBD) of human Mcm6 was found to directly interact with Cdt1 and this interaction may mediate the chromatin loading of Mcm2–7 complex. The structure of CBD exhibits a typical “winged-helix” fold which is generally involved in protein-nucleic acid interaction. Here we report the 1H, 15N and 13C chemical shift assignments of human Mcm6 CBD determined by triple resonance experiments. The resonance assignments obtained in this work were required for the structure–function studies of CBD by NMR spectroscopy (BMRB deposits with accession number 16396).  相似文献   

11.
Cdt1 is essential for loading Mcm2-7 proteins into prereplicative complexes (pre-RCs) during replication licensing and has been found in organisms as diverse as fission yeast and humans. We have identified a homologue of Cdt1 in Saccharomyces cerevisiae, which is required for pre-RC assembly. We show that, like Mcm2-7p, Cdt1p accumulates in the nucleus during G1 phase and is excluded from the nucleus later in the cell cycle by cyclin dependent kinases (cdks). Cdt1p interacts with the Mcm2--7p complex, and the nuclear accumulation of these proteins during G1 is interdependent. This coregulation of Cdt1p and Mcm2-7p represents a novel level of pre-RC control.  相似文献   

12.
The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G(1) phase assembly of pre-replicative complexes (pre-RC). Only the Orc1-5 subunits appear to be required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. Imaging of Orc6-YFP in live cells revealed a punctate pattern consistent with the organization of replication origins into subnuclear foci. Orc6 was not detected at the site of division between mother and daughter cells, in contrast to observations for metazoans, and is not required for mitosis or cytokinesis. An essential role for Orc6 in DNA replication was identified by depleting it at specific cell cycle stages. Interestingly, Orc6 was required for entry into S phase after pre-RC formation, in contrast to previous models suggesting ORC is dispensable at this point in the cell cycle. When Orc6 was depleted in late G(1), Mcm2 and Mcm10 were displaced from chromatin, cells failed to progress through S phase, and DNA combing analysis following bromodeoxyuridine incorporation revealed that the efficiency of replication origin firing was severely compromised.  相似文献   

13.
The eukaryotic DNA replication protein Mcm10 associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Xenopus laevis (X) Mcm10 binds DNA via a highly conserved internal domain (ID) and a C-terminal domain (CTD) that is unique to higher eukaryotes. Although the structural basis of the interactions of the ID with DNA and polymerase α is known, little information is available for the CTD. We have identified the minimal DNA binding region of the XMcm10-CTD and determined its three-dimensional structure by solution NMR. The CTD contains a globular domain composed of two zinc binding motifs. NMR chemical shift perturbation and mutational analysis show that ssDNA binds only to the N-terminal (CCCH-type) zinc motif, whose structure is unique to Mcm10. The second (CCCC-type) zinc motif is not involved in DNA binding. However, it is structurally similar to the CCCC zinc ribbon in the N-terminal oligomerization domain of eukaryotic and archaeal MCM helicases. NMR analysis of a construct spanning both the ID and CTD reveals that the two DNA binding domains are structurally independent in solution, supporting a modular architecture for vertebrate Mcm10. Our results provide insight in the action of Mcm10 in the replisome and support a model in which it serves as a central scaffold through coupling of interactions with partner proteins and the DNA.  相似文献   

14.
Mcm1 binds replication origins   总被引:8,自引:0,他引:8  
  相似文献   

15.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.  相似文献   

16.
The pre-replicative complex (pre-RC) is formed at all potential origins of replication through the action of the origin recognition complex (ORC), Cdc6, Cdt1, and the Mcm2-7 complex. The end result of pre-RC formation is the loading of the Mcm2-7 replicative helicase onto origin DNA. We examined pre-RC formation in vitro and found that it proceeds through separable binding events. Origin-bound ORC recruits Cdc6, and this ternary complex then promotes helicase loading in the presence of a pre-formed Mcm2-7-Cdt1 complex. Using a stepwise pre-RC assembly assay, we investigated the fate of pre-RC components during later stages of the reaction. We determined that helicase loading is accompanied by dissociation of ORC, Cdc6, and Cdt1 from origin DNA. This dissociation requires ATP hydrolysis at a late stage of pre-RC assembly. Our results indicate that pre-RC formation is a dynamic process.  相似文献   

17.
The replication fork helicase in eukaryotic cells is comprised of Cdc45, Mcm2-7, and GINS (CMG complex). In budding yeast, Sld3, Sld2, and Dpb11 are required for the initiation of DNA replication, but Sld3 and Dpb11 do not travel with the replication fork. Sld3 and Cdc45 bind to early replication origins during the G(1) phase of the cell cycle, whereas Sld2, GINS, polymerase ε, and Dpb11 form a transient preloading complex that associates with origins during S phase. We show here that Sld3 binds tightly to origin single-stranded DNA (ssDNA). CDK-phosphorylated Sld3 binds to origin ssDNA with similar high affinity. Origin ssDNA does not disrupt the interaction between Sld3 and Dpb11, and origin ssDNA does not disrupt the interaction between Sld3 and Cdc45. However, origin ssDNA substantially disrupts the interaction between Sld3 and Mcm2-7. GINS and Sld3 compete with one another for binding to Mcm2-7. However, in a mixture of Sld3, GINS, and Mcm2-7, origin ssDNA inhibits the interaction between Sld3 and Mcm2-7, whereas origin ssDNA promotes the association between GINS and Mcm2-7. We also show that origin single-stranded DNA promotes the formation of the CMG complex. We conclude that origin single-stranded DNA releases Sld3 from Mcm2-7, allowing GINS to bind Mcm2-7.  相似文献   

18.
Ivan Liachko  Bik K. Tye 《Genetics》2009,181(2):379-391
The connection between DNA replication and heterochromatic silencing in yeast has been a topic of investigation for >20 years. While early studies showed that silencing requires passage through S phase and implicated several DNA replication factors in silencing, later works showed that silent chromatin could form without DNA replication. In this study we show that members of the replicative helicase (Mcm3 and Mcm7) play a role in silencing and physically interact with the essential silencing factor, Sir2, even in the absence of DNA replication. Another replication factor, Mcm10, mediates the interaction between these replication and silencing proteins via a short C-terminal domain. Mutations in this region of Mcm10 disrupt the interaction between Sir2 and several of the Mcm2–7 proteins. While such mutations caused silencing defects, they did not cause DNA replication defects or affect the association of Sir2 with chromatin. Our findings suggest that Mcm10 is required for the coupling of the replication and silencing machineries to silence chromatin in a context outside of DNA replication beyond the recruitment and spreading of Sir2 on chromatin.  相似文献   

19.
The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号