首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein fouling is a critical problem for ultrafiltration. In this study, we adopted bovine serum albumin (BSA) as a model protein and polysulfone membrane as a typical ultrafiltration membrane. We then investigated the factors of the protein denaturation and aggregation, such as stirring shear stress and intermolecular exchange of disulfide during ultrafiltration, and discussed the BSA fouling mechanism. Fourier transform-infrared analysis revealed that magnetic stirring did not cause any difference in the secondary structural change of BSA gel-like deposits on the ultrafiltration membrane. BSA aggregates were collected from BSA gel-like deposits on the ultrafiltration membrane by centrifugation. Polyacrylamide gel electrophoresis in SDS analysis of BSA aggregates proved that the major binding of the BSA aggregates involved intermolecular disulfhydryl binding and that capping the free thiol group in BSA molecules with cysteine induced a remarkable decrease in the amount of the BSA aggregates during ultrafiltration. We concluded that one of the main factors in the BSA aggregation during ultrafiltration is the intermolecular exchange of disulfide through cysteinyl residue. We also found that the BSA aggregation caused a decrease in alpha-helix from 66% to 50% and an increase in beta-sheet from 20% to 36%, which was presumably because the cysteine residues associated with the intermolecular disulfide bonds had been located in alpha-helices. Copyright John Wiley & Sons, Inc.  相似文献   

2.
Cross-flow microfiltration is an important step in separating Baker’s yeast (Saccharomyces cerevisiae) from aqueous suspension in many processes. However the permeate flux often declines rapidly due to colloidal fouling of membranes and concentration polarisation. The present work explores the possibility of maintaining acceptable permeate flux by co-current sparging of gas along with the feed, which would scour away colloidal deposits and reduce concentration polarisation of membranes. In this work, both washed and unwashed yeast were used to study the effect of washing to reduce protein fouling of membranes. It was found that permeate flux increased by 45% for liquid throughput of 75 kg/h for a feed concentration of 2.0 kg/m3 of washed yeast as compared with unwashed yeast suspension without gas sparging. For washed yeast suspension, the increase in gas flow rate from 0.5 lpm to 1.5 lpm (30 l/h to 90 l/h) had beneficial effect on permeate flux. It is concluded that in the present case, the gas flow rate should be less than or equal to the liquid flow rate for enhancement of permeates flux.  相似文献   

3.
A submerged membrane bioreactor (MBR) with a working volume of 1.4 L and a hollow fiber microfiltration membrane was used to treat a contaminated raw water supply at a short hydraulic retention time (HRT) of approximately 1 h. Filtration flux tests were conducted regularly on the membrane to determine various fouling resistances, and confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were employed to characterize the biofouling development and sludge cake formation on the membrane. The experimental results demonstrate that the MBR is highly effective in drinking water treatment for the removal of organic pollutants, ammonia, and UV absorbance. During the MBR operation, the fouling materials were not uniformly distributed on the entire surface of all of the membrane fibers. The membrane was covered partially by a static sludge cake that could not be removed by the shear force of aeration, and partially by a thin sludge film that was frequently washed away by aeration turbulence. The filtration resistance coefficients were 308.4 x 10(11) m(-1) on average for the sludge cake, 32.5 x 10(11) m(-1) on average for the dynamic sludge film, and increased from 10.5 x 10(11) to 59.7 x 10(11) m(-1) for the membrane pore fouling after 10 weeks of MBR operation at a filtration flux of 0.5 m3/m2 x d. Polysaccharides and other biopolymers were found to accumulate on the membrane, and hence decreased membrane permeability. More important, the adsorption of biopolymers on the membrane modified its surface property and led to easier biomass attachment and tighter sludge cake deposition, which resulted in a progressive sludge cake growth and serious membrane fouling. The sludge cake coverage on the membrane can be minimized by the separation, with adequate space, of the membrane filters, to which sufficient aeration turbulence can then be applied.  相似文献   

4.
This study deals with the use of an upward gas/liquid slug flow to reduce tubular mineral membrane fouling. The injection of air into the feedstream is designed to create hydrodynamic conditions that destabilize the cake layer over the membrane surface inside the filtration module complex. Experimental study was carried out by filtering a biological suspension (yeast) through different tubular mineral membranes. The effects of operating parameters, including the nature of the membrane, liquid and gas flowrates, and transmembrane pressure, were examined. When external fouling was the main limiting phenomenon, flux enhancements of a factor of three could be achieved with gas sparging compared with single liquid phase crossflow filtration. The economic benefits of this unsteady technique have also been examined. To investigate the possibility of long-term operation of the two-phase flow principle, dense cell perfusion cultures of Saccharomyces cerevisiae were carried out in a fermentor coupled with an ultrafiltration module. The air injection allowed a high and stable flux to be maintained over 100 h of fermentation, with a final cell concentration of 150 g dry weight/L. At equal biomass level, a twofold gain in flux could be attained compared with classical steady crossflow filtration at half the cost.  相似文献   

5.
Crossflow filtration of yeast broth cultivated in molasses   总被引:3,自引:0,他引:3  
A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 mum). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 mum in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 mum, but using larger pores of 3 to 5 mum it returned almost to the bases line. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Binary aqueous solutions of bovine serum albumin (BSA) and beta-lactoglobulin (bLG) were subject to flux-stepping and constant flux ultrafiltration to identify the apparent critical flux and to study the mechanisms and factors affecting fouling when the membrane is permeable to one protein component. Membranes from these filtration experiments were analyzed using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to locate and quantify levels of fouling below and above the apparent critical flux. Hydrophilic (PLTK) regenerated cellulose and hydrophobic (PBTK) polysulfone asymmetric membranes were used, both of 30 kDa nominal molecular weight cut-off. For the hydrophilic PLTK membrane, protein deposition was shown to depend on electrostatic forces, exhibiting little or no fouling when the proteins had the same charge sign as that of the membrane. This was found to apply for both dilute equal mass-per-unit-volume and equimolar binary mixtures. For the PBTK membrane, hydrophobic protein-membrane attractive forces were sufficiently strong to cause deposition of bLG even in the presence of repulsive electrostatic forces. For the PBTK membrane deposition exceeded monolayer coverage below and above apparent critical flux conditions but for the PLTK membrane this generally occurred when the apparent critical flux was exceeded. MALDI-MS was shown to be a facile direct analytical technique for individually quantifying adsorbed proteins on membrane surfaces at levels as low as 50 fmol/mm(2). The high levels of compound specificity inherent to mass spectrometry make this approach especially suited to the quantification of individual components in mixed deposits. In this study, MALDI-MS was found to be successful in identifying and quantifying the protein species responsible for fouling.  相似文献   

7.
Summary When the crossflow specific cake resistance is determined from measurements of the steady state cake mass and filtrate flux, an apparent value is obtained which is equal to the true value only if membrane fouling is negligible. The apparent specific resistance can increase with increasing crossflow velocity and pure-water membrane resistance, and exhibit a minimum with respect to transmembrane pressure.  相似文献   

8.
Several studies have shown that one of the critical factors governing protein fouling of microfiltration membranes is the presence of denaturedand/or aggregated protein in the bulk solutions. Experiments were performed to evaluate the role of intermolecular disulfide interchange reactionson protein aggregation and membrane fouling during stirred cell microfiltration of bovine serum albumin (BSA). The flux decline during BSA filtration was quite dramatic due to the formation of a protein deposit thatfully covered the membrane pores. This flux decline could be completely eliminated by capping the free sulfhydryl group present on the BSA with eithera carboxymethyl or cysteinyl group, demonstrating the critical importance of this free thiol in the intermolecular aggregation reactions and, in turn, protein fouling. BSA aggregation during storage could be reduced by the addition of metal chelators (EDTA and citrate) or dithiothreitol, orby storage at lower pH (7.0) these solutions all had a significantly lower rate of fouling upon subsequent filtration. This behavior is completely consistent with the known chemistry of the thiol-disulfide interchange reaction, demonstrating that an understanding of these intermolecular (aggregation) reactions can provide a rational framework for the analysis and control of protein fouling in these membrane systems. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
研究采用添加硅藻土、植物棉、活性炭等3种不同预处理手段来过滤铜绿微囊藻,并考察未预处理及预处理后的藻液过滤过程中的过滤特性、有机物分布及膜污染特性。结果表明, 3种预处理手段对过滤通量均有所提高并减缓膜污染。其中,硅藻土预处理提高平均过滤通量达915%,明显优于其他助滤手段。活性炭预处理能够有效吸附芳香族蛋白质类荧光污染物,显著降低污染膜的不可逆化学污染阻力。通过OCT及SEM分析可知未预处理的高藻水直接过滤造成的膜污染最严重,饼层结构的粗糙度最低并且厚度也最小,而硅藻土通过优化饼层结构以达到缓解膜污染的效果。最后基于XDLVO理论结果也进一步证实硅藻土预处理手段对改善膜污染效果最好。研究结果对未来蓝藻水华膜处理技术的预处理手段研发具有指导意义。  相似文献   

10.
A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc-fusion protein using the three commercially available filters, F-1, F-2, and F-3 in a range of buffer conditions including sodium-phosphate and tris-acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.  相似文献   

11.
Filtration of an isotonic suspension of baker's yeast through a 0.45‐μm membrane was studied at two different pressures, 40 and 80 kPa, for yeast concentrations ranging from 0.14 to 51 kg/m3 (dry weight). For a yeast volume fraction above 0.06 (~21.8 kg/m3), the porosity of the yeast cake is less dependent on the suspension concentration. For highly diluted suspensions, the specific cake resistance approaches a minimum that depends on the filtration pressure. Correlation functions of cake porosity and specific cake resistance were obtained for the concentration range investigated showing that the Kozeny–Carman coefficient increases when the applied pressure increases. Both filtration pressure and slurry concentration can be process controlled. In the range of moderate yeast concentration, the filtrate flux may be increased by manipulating the filtration pressure and the slurry concentration, thereby improving the overall process efficiency. The complex behavior of yeast cakes at high slurry concentration can be described by a conventional model as long as part of yeast cells are assumed to form aggregates, which behave as single bigger particles. The aggregation effect may be accounted for using a binary mixture model. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
Filtration of ethanol fermentation medium and broth by using symmetric and asymmetric ceramic membranes has been studied in an internal filter bioreactor. Factors studied included membrane structure and pore size, medium sterilization, and concentrations of glucose, yeast extract in the medium, yeast cell and protein in broth. The aim was to determine the main factors responsible for the decline in filtration performance during ethanol fermentation by Saccharomyces cerevisiae. Flux index (Fi) of a new concept has been developed to evaluate the degree of flux decline during the membrane fouling process. Fi was defined as the ratio of the membrane flux at certain filtration time (t?=?t) to the initial (t?=??0) flux of pure water, not the initial (t?=?+0) flux of the test fluid. Flux with sterilized medium was approximately two-fold higher than that with unsterilized medium although the reason could not be explained clearly. Glucose, interaction between glucose and yeast extract, yeast cells, and proteins in fermentation broth were found to play an important part in membrane fouling. Fi of the symmetric membrane decreased to a less extent than that of the asymmetric membrane with increasing glucose concentration. But, the result with various yeast cell concentrations turned out to be contrary. Fouling was more serious for asymmetric membrane during the filtration of fermentation supernatant. This was thought to be due to different fouling mechanisms for the two types of membrane.  相似文献   

13.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5–100 L/m2/h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20–30 L/m2/h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.  相似文献   

15.
To improve protein separation, a novel integrated device combining membrane filtration and chromatography has been developed. The device basically consists of a hollow fiber filtration module whose shell side is filled with chromatographic resin beads. However, there is an essentially impermeable coated zone near the hollow fiber module outlet. The integrated device enjoys the advantages of both membrane filtration and chromatography; it also allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane; the rest of the hollow fiber membrane remained unaffected. Myoglobin (Mb) and alpha-lactalbumin (alpha-LA) were primarily used as model proteins in a binary mixture; binary mixtures of Mb and bovine serum albumin (BSA) were also investigated. Separation behaviors of binary protein mixtures were studied in devices having either an ultrafiltration (UF) or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after introducing the impermeable coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, four loading-washing-elution-reequilibration-based cyclic runs for separation of Mb and alpha-LA were performed in the device using a MF membrane with a coated zone without cleaning in between. The Mb and alpha-LA elution profiles for the four consecutive runs were almost superimposable. Due to lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem, unlike in conventional microfiltration.  相似文献   

16.
This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95–98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.  相似文献   

17.
The capacity of virus filters used in the purification of therapeutic proteins is determined by the rate and extent of membrane fouling. Current virus filtration membranes have a complex multilayer structure that can be used with either the skin-side up or with the skin-side facing away from the feed, but there is currently no quantitative understanding of the effects of membrane orientation or operating conditions on the filtration performance. Experiments were performed using Millipore's Viresolve 180 membrane under both constant pressure and constant flux operation with sulfhydryl-modified BSA used as a model protein. The capacity with the skin-side up was greater during operation with constant flux and at low transmembrane pressures, with the flux decline or pressure rise due primarily to osmotic pressure effects. In contrast, data obtained with the skin-side down showed a slower, steady increase in total resistance with the cumulative filtrate volume, with minimal contribution from osmotic pressure. The capacity with the skin-side down was significantly greater than that with the skin-side up, reflecting the different fouling mechanisms in the different membrane orientations. These results provide important insights for the design and operation of virus filtration membranes.  相似文献   

18.
The hydraulic resistance and membrane fouling effects of Candida utilis in fermentation broth were investigated using Millipore PVDF 0.22-mum membranes (GVWP and GVHP) in a stirred-cell system at 50 kPa and 700 rpm. With the various components of broth, spent medium, which contains colloidal particles and macromolecules having sizes (0.32 to 2.67 mum) comparable with the membrane pores (actual range 0.26 to 0.63 mum), was found to be the major contributing factor to the membrane fouling by broth through pore plugging. This led the spent medium to exhibit the highest hydraulic resistance (R(sm) of 5.8E + 12 m(-1)) and percentage flux loss (81.0%) when compared with either intact cells alone in buffer or to whole broth. Intact cells appeared to physically block and protect the pores without significant adhesion, because of the relatively hydrophilic nature of their cell walls (hydrophobicity of 5.9% at hour 36), resulting in the lowest hydraulic resistance (Rsbc of 7.5E + 11m(-1)) and percentage flux loss (19.3%).However, the hydraulic resistance and percentage flux loss of broth increased as cells aged. This was attributed to the increase in particle loading (intact cells by 15.37%, released cell contents and cell fragments) and in the hydrophobicity of cell walls. Autoclaved broth, lysed broth and aged broth, which contained a larger portion of colloidal particles and released cell contents caused a more pronounced fouling effect. This was revealed by the absence of flux recovery after depressurization with continuous stirring, even when a hydrophilic membrane was used. Furthermore, the hydrophobicity of C. utilis was found to increase with yeast extract present in medium, and use of hydrophobic membranes helped enhance the fouling effect. Overall, the degree of irreversible membrane fouling could be revealed by the value of R(sm)/R(t') and the hydraulic resistance, which resulted from concentration polarrzation, could be revealed by the value of R(c)/R(t') where R(t) = R(m) + R(sm) + R(c') and R(m) is the clean membrane resistance. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Understanding the effects of membrane fouling on system capacity is critical for the successful design and scale-up of microfiltration systems. The underlying morphology and structure of the microfiltration membrane can have a significant effect on system capacity by altering the rate and extent of fouling. Experimental data were obtained for system capacity during protein microfiltration using several model membranes with both homogeneous and composite structures. Data were compared with predictions of a new model that can account for both pore blockage and cake formation, and also includes the effects of membrane morphology on internal flow profiles within the membrane. Membranes with highly interconnected pores have a significantly higher capacity due to the reduction in flux decline arising from the fluid flow under and around any surface blockage. The model calculations are in good agreement with the flux decline data, allowing far more accurate predictions of system capacity than for the commonly used V(max) analysis.  相似文献   

20.
Klebsiella oxytoca produced a type of exopolysaccharide (EPS) with the average molecular weight (Mw) of 116,018 Da and the average size of 260 nm. The EPS monosaccharide components contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose and the molar ratio among them was 0.033:0.0411:0.0147:0.0051:0.2393:0.0986:0.1304. Typical EPS absorption peaks in FT-IR spectrum and pseudoplastic properties were also revealed. The polyvinylidenefluoride (PVDF) membrane showed a relatively larger flux decline resulted from the EPS fouling. The EPS filtration was dominated by more than one mechanism at the beginning phase and mainly by the cake formation at the later phase for both membranes. The pore blocking resistance had a predominant contribution to the filtration resistance and the cake resistance played a secondary role for both the membranes. The EPS adsorption resulted in a weak membrane fouling. The PVDF membrane exhibited a larger adsorption resistance than the polypropylene (PP) membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号