首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification and estimation of elastase in serum and plasma   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Electrophoretic separation of partially purified elastase preparations from pancreas followed by incubation of the electrophoretogram in contact with an agar gel containing 4% of either Congo Red-stained or unstained elastin demonstrated that the enzyme which dissolves elastin can be identified with that which releases dye from the stained preparation. 2. A method for the estimation of elastase based on the release of dye from Congo Red-stained elastin is described. It is 23 times as sensitive as methods employing protein determination. 3. With the method, elastase activity can be identified in plasma and in a partially fractionated plasma protein preparation. 4. Lineweaver–Burk plots of these estimates of activity at a variety of substrate concentrations indicate that the reaction between elastase and the dyed elastin is more closely similar to that between elastase and the soluble substrate elastin rather than to that between elastase and the solid substrate. 5. Values for Km and Vmax. calculated for the enzyme present in plasma present further evidence for its identity with the pancreatic enzyme. 6. By calculation of the slopes of the Lineweaver–Burk plots for various enzyme concentrations it has proved possible to demonstrate that the inhibitor which is also present in the plasma is without effect on the enzyme when it acts on the dyed substrate.  相似文献   

2.
We have developed a rapid, versatile, and sensitive elastase assay that is based on the measurement of primary amines that are exposed due to enzymatic degradation of proteins, using succinylated elastin as the substrate for elastase. After incubation with elastase the degree of digestion is determined with trinitrobenzene sulfonic acid. The assay is rapid and sensitive, detecting elastase down to 1 ng/ml, and is linear up to enzyme concentrations of 10 μg/ml. The assay is carried out in microtiter plate wells and therefore offers the potential for assaying numerous samples of small volume. The use of succinylated elastin shows specificity for elastase over the control protease, trypsin. This assay is also versatile because it can be applied to samples such as cell culture supernatants, blood plasma, tissue biopsies, and tissue homogenates.  相似文献   

3.
The vitamin D-binding protein (DBP) binds to the plasma membranes of numerous cell types and mediates a diverse array of cellular functions. DBP bound to the surface of leukocytes serves as a co-chemotactic factor for C5a, significantly enhancing the chemotactic activity of pM concentrations of C5a. This study investigated the regulation of DBP binding to neutrophils as a possible key step in the process of chemotaxis enhancement to C5a. Using radioiodinated DBP as a probe, neutrophils released 70% of previously bound DBP into the extracellular media during a 60-min incubation at 37 degrees C. This was suppressed by serine protease inhibitors (PMSF, Pefabloc SC), but not by metallo- or thiol-protease inhibitors. DBP shed from neutrophils had no detectable alteration in its m.w., suggesting that a serine protease probably cleaves the DBP binding site, releasing DBP in an unaltered form. Cells treated with PMSF accumulate DBP vs time with over 90% of the protein localized to the plasma membrane. Purified neutrophil plasma membranes were used to screen a panel of protease inhibitors for their ability to suppress shedding of the DBP binding site. Only inhibitors to neutrophil elastase prevented the loss of membrane DBP-binding capacity. Moreover, treatment of intact neutrophils with elastase inhibitors prevented the generation of C5a co-chemotactic activity from DBP. These results indicate that steady state binding of DBP is essential for co-chemotactic activity, and further suggest that neutrophil elastase may play a critical role in the C5a co-chemotactic mechanism.  相似文献   

4.
1. Fragments of isolated rat liver plasma membrane possess a ribonuclease activity which at pH 7.8 in the presence of 10 mM EDTA can digest polyuridylic acid (poly(U)) and polycytidylic acid (poly(C)) but not polyadenylic acid (poly(A)) and polyguanylic acid (poly(G)). Under these conditions, the membrane preparation does not degrade native or denatured DNA. 2. The products of the reaction with poly(U) (10 mM EDTA present) can be separated on DEAE-Sephadex into oligonucleotides of increasing chain length. Most of the products are di- to hexa-nucleotides which contain terminal 3'-phosphate groups. 3. When EDTA is not present (pH 7.8 or 8.8) the plasma membrane preparation degrades both poly(A) and poly(U). With poly(A) the product is all nucleoside while with poly(U) as substrate most of the product is nucleoside, but also some oligonucleotides are produced. 4. The ribonuclease releases acid soluble products very slowly from high concentrations of poly(U) (mg/ml). 5. Uridine trinucleotide with and without a terminal 3'-phosphate group is degraded by rat liver plasma membrane. The trinucleotide diphosphate is rapidly hydrolyzed to nucleoside while the trinucleotide itself is slowly digested and yields intermediate products, including nucleoside.  相似文献   

5.
Insulin receptors in rat liver plasma membranes contain two alpha- and two beta-subunits held together by interchain disulphide bonds ([alpha beta]2 receptors). Affinity-labelled receptors were digested with chymotrypsin or elastase and then exposed to dithiothreitol before solubilization from membranes and SDS/polyacrylamide-gel electrophoresis. This resulted in partial reduction and isolation of Mr-225,000 alpha beta, Mr-200,000 alpha 1 beta, Mr-165,000 alpha beta 1 and Mr-145,000 alpha 1 beta 1 receptor halves containing intact (alpha, beta) or degraded (alpha 1, beta 1) subunits. The ability to identify half-receptor complexes containing intact or degraded subunits made it possible to assay each subunit simultaneously for insulin-induced proteolysis in isolated plasma membranes or during perfusion of rat liver in situ with insulin. In liver membranes, insulin binding increased the fraction of receptors containing degraded alpha-subunits to about one-third of the total population during 2 h of incubation at 23 degrees C. beta-Subunit proteolysis increased only minimally during this time. Plasma membranes isolated from livers perfused with insulin at 37 degrees C contained degraded alpha-subunits but only intact beta-subunits, showing that insulin induced cell-surface proteolysis of the binding, but not the kinase, domain of its receptor. Since previous observations [Lipson, Kolhatkar & Donner (1988) J. Biol. Chem 263, 10495-10501] have shown that receptors containing degraded alpha-subunits are internalized but do not recycle, it is possible that cell-surface degradation may play a role in the regulation of insulin-receptor number in hepatic tissue. Proteolysis of the beta-subunit is not a likely mechanism by which receptor-kinase activity may be attenuated under physiological conditions.  相似文献   

6.
The antiproteinase activities against trypsin, chymotrypsin, elastase, papain and rat leucocyte proteinases were determined in plasma from control and Morris hepatoma-bearing rats. Bovine trypsin and chymotrypsin were similarly inhibited by the two types of plasma whereas porcine pancreatic elastase, papain and rat leucocyte neutral proteinases were more efficiently inhibited by plasma from tumour-bearing rats. The increased plasma concentrations of some proteinase inhibitors, as determined by rocket immunoelectrophoresis, are suggested to be responsible for the observed differences in inhibition. The highest increases in plasma of tumour-bearing rats were observed for alpha 2-macroglobulin and alpha 1-acute-phase globulin. The synthesis and secretion of six proteinase inhibitors: antithrombin III, alpha 1-proteinase inhibitor, alpha 1-macroglobulin, alpha 2-macroglobulin, alpha 1-acute-phase globulin and haptoglobin, as well as albumin, were measured in tissue slices from rat liver and Morris hepatoma after incubation with [14C]leucine. Local inflammation inflicted upon the tumour-bearing rats increased formation of acute-phase proteins in liver slices but not in hepatoma slices.  相似文献   

7.
In this report, the susceptibility of type VIII collagen to human neutrophil elastase is compared to other extracellular matrix components. Type X collagen is degraded to specific fragments at a substrate to enzyme ratio of 5:1 after 20 h at room temperature, but type VIII collagen is almost completely degraded after only 4 h incubation at a substrate to enzyme ratio of 50:1 and partly degraded after only 15 min. Laminin, merosin and types I, III, IV and V collagen exhibit no susceptibility to neutrophil elastase under the latter conditions, while fibronectin is degraded.  相似文献   

8.
A progress-curve kinetic method was developed to investigate the interaction between human leukocyte elastase and macromolecular substrates, such as insoluble elastin and soluble plasma proteins. A fluorogenic, synthetic peptide (reporter substrate) was incubated in the presence of finely powdered elastin and enzyme under continuous stirring. The progress curves, which corresponded to the release of product from the reporter substrate, were very sensitive to the presence of various amounts of the macromolecular substrate. The kinetic parameters for the interaction between elastase and elastin were calculated using a pre-steady-state approach characteristic of slow-binding inhibitors. The interaction of elastase with the soluble protein substrates was studied with similar techniques, but formally treating the substrates as classical, fully competitive inhibitors. The adsorption of elastase on insoluble elastin was a time-dependent process consisting of at least three observable phases: The first step was a rapid formation of an encounter complex followed by a very slow step lasting several minutes, and the third step consisted of a steady-state release of products. On the contrary, elastase very rapidly formed productive complexes with bovine serum albumin and a human monoclonal immunoglobulin G. The progress-curve method was also suitable for analyzing the behavior of inhibitors in the presence of protein substrates. The kinetic parameters which characterize the interaction between elastase and protein substrates represent a practical tool to formulate hypotheses on the efficiency of inhibitors in vivo.  相似文献   

9.
Human α1-protease inhibitor which is an important plasma protein, contains a methionine residue at its reactive site. A model synthetic peptide substrate, succinyl-L-alanyl-L-alanyl-L-prolyl-L-methionine p-nitroanilide, has been employed to study the effect of oxidation of methionine on the rate of hydrolysis of this substrate by human elastases. The methionine sulfoxide derivative obtained by mild oxidation of this substrate is hydrolyzed by pancreatic elastase 2 and leukocyte elastase at rates that are 5% and 0.3% of the rates measured for hydrolysis of the parent compound by the respective enzymes. These results suggest that oxidation of the active site methionine residue of human α1-protease inhibitor may decrease the rate of reaction of pancreatic or leukocyte elastase with this inhibitor.  相似文献   

10.
A DEAE-Sephadex column chromatography step utilized to purify human Factor VII consistently yields a protein peak between the factor VII activity peak and prothrombin, factor X and factor IX activity peak (S.P. Bajaj, S.I. Rapaport, and S.F. Brown: J. Biol. Chem. 251, 253-259, 1981). We now report that this protein peak contains protein C and protein S. Preparative disc polyacrylamide gel electrophoresis of the proteins in this peak permitted a complete separation of protein C from protein S. Protein C at this step usually contained approximately 5-10% of Factor X, which could be removed by a goat anti-human Factor X antibody column. For a typical preparation, starting with 10L of plasma, the yield of Protein C was 5 mg and of protein S was 4 mg. Both proteins revealed apparent homogeneity in sodium dodecyl sulfate gel electrophoretic system. beta-Protein C and beta-protein S were not observed in our preparations starting with plasma collected directly into citrate anticoagulant containing benzamidine and soybean trypsin inhibitor, suggesting that these beta forms of protein C and protein S, isolated by other investigators, are slightly degraded forms of the native proteins. Antisera generated to these proteins were monospecific and could be used to monitor column fractions during purification. When examined by immunoelectrophoresis, the electrophoretic mobility of protein S in plasma was slower than that of isolated protein S. When exposed to plasmin, protein C was activated slightly and then rapidly degraded.  相似文献   

11.
The metabolism of exogenous leukotriene B4 (LTB4) was investigated in venous blood obtained from normal and asthmatic subjects. Using specific radioimmunoassay (RIA) and reverse-phase high performance liquid chromatography (RP-HPLC) techniques we have demonstrated that LTB4 is relatively stable during a 2 hr incubation period at 37 degrees C in our system in vitro. Nevertheless, chromatographic analysis revealed the presence of two products which had retention times identical to 20-hydroxy LTB4 (20-0H LTB4) and 20-carboxy LTB4 (20-C00H LTB4) in which the dicarboxylic derivative was the main metabolite present after 15 min incubation. The amount of LTB4 and its w-oxidation products observed after a 2 hr incubation period was 73% and 24% respectively. There was no basal release of LTB4 from blood. The appearance of these oxidative products was totally suppressed at 4 degrees C and with incubations performed with either venous plasma or Hartmann's control. No significant difference was observed in substrate metabolism between normal and asthmatic subjects. Our results demonstrate that LTB4 is slowly degraded in human whole blood through a cellular dependent process of w-oxidation which may be an important pathway for regulating the availability of this potent biologically active substance.  相似文献   

12.
Protein kinase, phosphodiesterase and adenylate cyclase of plasma membrane of adipocytes and the effect of the feedback regulator (FR) on these three enzymes was measured and compared. The basal level ratio of adenylate cyclase to phosphodiesterase to protein kinase was 1:1.9:3.0. Epinephrine and/or FR alters this ratio. FR stimulated protein kinase activity up to 3 fold in the presence of a wide range of enzyme concentrations, 5-50 mug membrane protein/tube. The concentration of FR effective for stimulation of membrane protein kinase was much greater than that needed for inhibition of adenylate cyclase and phosphodiesterases. The inhibition by FR on adenylate cyclase was the most potent effect among the 3 enzymes. 1 U (or 2 U/ml) of FR inhibited 50% of the adenylate cyclase activity in a defined system. The maximum effective concentration of FR for stimulation of membrane protein kinase was greater than 10 U/ml. Histone type 11A was the best substrate for protein phosphorylation so far observed. The FR stimulatory effect was observed at all substrate concentrations used ranging from 1-5 mg/ml. A NaF concentration curve shows that 15 mM NaF gave maximum phosphorylation. The stimulatory effect of FR was observed both in the presence and absence of NaF. Protein kinase of adipocyte plasma membrane was mainly cAMP-independent. The effect of FR (20 U/ml) in stimulation of protein phosphorylation was much greater than that of cAMP (1 X 10(-6) M). The cAMP and FR effects seemed to be additive. Preincubation of plasma membrane with FR in the absence of ATP resulted in no decrease but slight increase in protein kinase activity. A shift in protein kinase, phosphodiesterase and adenylate cyclase ratios by FR suggests the regulatory role of FR in cAMP metabolism in adipocytes.  相似文献   

13.
Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca(2+) concentrations and oscillatory association of PKCβ-enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca(2+) mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca(2+) entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.  相似文献   

14.
Termination of RNA by nucleotides of 9-beta-D-xylofuranosyladenine   总被引:1,自引:0,他引:1  
The protease susceptibilities of recently identified cartilage collagens HMW, 1α, 2α, and 3α were investigated. Mammlian skin collagenase cleaved the 3α chain under conditions where HMW, 1α and 2α were not degraded. A tumor cell derived type V collagenolytic metalloproteinase degraded HMW, 1α and 2α, but not 3α. Plasmin or leucocyte elastase failed to significantly degrade any of the cartilage collagens when digestion was performed at 25°C (15 hours, enzyme to substrate ratio 1:100). At 36°C but not 33°C α thrombin degraded HMW, 1α and 2α, with little or no degradation of 3α. This pattern of protease susceptibility for HMW, 1α and 2α is therefore similar to type V collagen. The cleavage of 3α by skin collagenase but not by elastase is similar to type II collagen. These results suggest that HMW, 1α and 2α are part of the type V collagen family.  相似文献   

15.
Protein kinase associated with rat liver microsomes was only partly extracted by treatment with 1.5 M KCl. The enzyme was solubilised by Triton X-100 or sodium deoxycholate at the same or slightly higher detergent concentrations than microsomal marker components. The enzyme activity increased 2-3 fold upon solubilisation. Three peaks with protein kinase activity (fractions MI, MII and MIII) were resolved on DEAE-cellulose chromatography. Fraction MIII but not fractions MI or MII was activated by adenosine 3':5'-monophosphate (cyclic AMP). All fractions catalysed the phosphorylation of protamine and histones but not that of casein or phosvitin. Fractions MI and MIII had a similar substrate specificity and phosphorylated histones at a relatively much higher rate than did fraction MII. The isoelectric points were 8.1 for fraction MI, 5.5 for fraction MII and 4.9 for fraction MIII. On incubation of fraction MIII with cyclic AMP it was split into two catalytically active components with pI 8.1 and 7.35. The component with pI 8.1 was predominant and corresponded to fraction MI. Five protein kinase peaks were resolved from rat liver cytosol by DEAE-cellulose chromatography. Three of them (fractions CIa, CIIb and CIII) had the same properties as each of the microsomal kinase fractions. A forth fraction (CIIa) was cyclic-AMP-dependent and had the same substrate specificity as fractions MI and MIII. Its pI was 5.1, and it was split into two components by cyclic AMP (pI 8.1 and 7.35). In binding studies fraction CIIb bound more efficiently to microsomes than fraction CIII, while fractions CIa, CIIa and the microsomal protein kinase fractions did not bind appreciably. When microsomes were treated with trypsin exposed protein kinase was inactivated and the latency of the remaining enzyme increased substantially. Most of fraction MII was inactivated by trypsin while fraction MIII was resistant. The possible orientation of protein kinase fractions MII and MIII in the microsomal membrane is discussed.  相似文献   

16.
Collagenase is assayed by incubation with soluble, telopeptide-free collagen extracted from rat skin and labeled with [2-3H]acetic anhydride. Collagen is cleaved by collagenase and the resulting fragments are digested with trypsin and chymotrypsin. Undigested collagen is recovered by precipitation with trichloroacetic acid, collected on glass-fiber filters, and quantitated by liquid scintillation spectrometry. This procedure combines features of the Cawston and Barrett (T.E. Cawston and A.J. Barrett, 1979, Anal. Biochem. 99, 340-345) and the Ryh?nen et al. (L. Ryh?nen et al., 1982, Collagen Rel. Res. 2, 117-130) methods. The first method provides a simple way to prepare large quantities of uniform substrate, while the second increases the specificity of the assay by removal of the labeled telopeptides. The assay is reproducible and linear with time and enzyme concentration. It is approximately 10X more sensitive than the Cawston and Barrett method and can readily detect 1-8 mU collagenase (1 unit equals 1 microgram collagen cleaved/min at 30 degrees C). The substrate is resistant to elastase, trypsin, and chymotrypsin and is completely degraded by bacterial collagenase. Collagenase is the only tissue metalloprotease found, to date, that cleaves the substrate.  相似文献   

17.
In previous studies we reported that polymorphonuclear cell (PMN) elastase cleaves apoB-100 of human plasma low density lipoprotein (LDL) into seven or eight large Mr fragments (1, Polacek, D., R.E. Byrne, G.M. Fless, and A.M. Scanu. 1986. J. Biol. Chem. 261: 2057-2063). In the present studies we examined the interaction of native and elastase-digested LDL (ED-LDL) with primary cultures of human monocyte-derived macrophages (HMD-M). For this purpose LDL was digested with purified PMN elastase, re-isolated by ultracentrifugation at d 1.063 g/ml to remove the enzyme, and radiolabeled with 125I. At all LDL concentrations in the medium, the degradation of 125I-labeled ED-LDL was 1.5- to 2.5-fold greater than that of 125I-labeled native LDL, and for both lipoproteins species it was further enhanced by prior incubation of the cells in autologous lipoprotein-deficient serum (ALPDS). ED-LDL incubated with HMD-M in a medium containing [14C]oleate stimulated cholesteryl [14C]oleate formation 2- to 3-fold more than native LDL. In competitive degradation experiments, unlabeled ED-LDL did not inhibit the degradation of 125I-labeled acetylated LDL, whereas it caused a 90% inhibition of the degradation of 125I-labeled native LDL. At 4 degrees C, the binding of both 125I-labeled native and 125I-labeled ED-LDL was specific and of a high affinity. At saturation (Bmax), the binding of 125I-labeled ED-LDL was 2-fold higher (68 ng/mg cell protein) than that of 125I-labeled native LDL (31 ng/mg), with Kd values of 6.5 x 10(-8) M and 2.1 x 10(-8) M, respectively. A possible explanation of the binding data was provided by electrophoretic analyses suggesting that ED-LDL was twice the size of native LDL and thus potentially capable of delivering proportionately more cholesterol to the cells. Taken together, the results indicate that 1) digestion of LDL by purified PMN elastase results in a greater mass of ED-LDL (relative to native LDL) being degraded per unit time by HMD-M; 2) uptake of ED-LDL occurs via the LDL receptor; and 3) LDL digested by PMN elastase undergoes a physical change that may be responsible for its unique interactions with HMD-M. We speculate that if this process were to occur in vivo during an inflammatory process, macrophages could acquire excess cholesterol and be transformed into foam cells which are considered to be precursors of the atherosclerotic process.  相似文献   

18.
A nonradioactive dot-blot assay for protein tyrosine kinase activity   总被引:1,自引:0,他引:1  
A new procedure for the assay of protein tyrosine kinase, based on the detection of phosphorylated tyrosyl residues by using monoclonal antibodies to phosphotyrosine, is described. After incubation of a protein tyrosine kinase sample with the substrates poly-(GluNa,Tyr)4:1 and unlabeled ATP an aliquot of the reaction mixture is transferred to a polyvinylidene difluoride membrane. The extent of tyrosine phosphorylation is measured by probing the membrane with antiphosphotyrosine antibody followed by detection by the immunogold silver staining procedure. The signal is quantified by densitometry. The assay is linear with time and is quantitative in a wide range of sample protein concentrations. Its sensitivity allows the kinetic characterization of protein tyrosine kinases at low substrate concentrations, whereas on the other hand the avoidance of radioactivity enables the use of high ATP concentrations as well. Protein tyrosine kinase activities of human breast carcinomas and normal breast tissues measured with this method correlated well with the conventional assay, in which the incorporation of [32P]phosphate is measured by TCA precipitation and liquid scintillation counting. Compared to the latter, the new assay is at least as sensitive and accurate and harbors the advantage of the avoidance of radioactivity, thus enabling one to perform a large number of protein tyrosine kinase assays simultaneously.  相似文献   

19.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

20.
The two-way and three-way interactions among active-site-blocked bovine thrombin, bovine protein C, and the elastase fragment of rabbit thrombomodulin (elTM) were examined by analytical ultracentrifugation at 23.3 degrees C in 100 mM NaCl, 50 mM Tris (pH 7.65), and 1 mM benzamidine, in the presence of 0 to 5 mM calcium chloride. Thrombin and elTM form a tight (Kd less than 10(-8) M) 1:1 complex in the absence of Ca2+ that weakens with the addition of Ca2+ (Kd approximately 4 microM in 5 mM Ca2+). Without Ca2+, thrombin and protein C form a 1:1 complex (Kd approximately 1 microM) and what appears to be a 1:2 thrombin-protein C complex. The Kd for the 1:1 complex weakens over 100-fold in 5 mM CaCl2. Protein C and elTM form a Ca(2+)-independent 1:1 complex (Kd approximately 80 microM). Nearly identical binding to thrombin and elTM is observed when active-site-blocked activated bovine protein C is substituted for protein C. Thrombin inhibited by diisopropyl fluorophosphate and thrombin inhibited by a tripeptide chloromethyl ketone exhibited identical behavior in binding experiments, suggesting that the accessibility of protein C to the substrate recognition cleft of these two forms of thrombin is nearly equal. Human protein C binds with lower affinity than bovine protein C. Ternary mixtures also were examined. Protein C, elTM, and thrombin form a 1:1:1 complex which dissociates with increasing [Ca2+]. In the absence of Ca2+, protein C binds to the elTM-thrombin complex with an apparent Kd approximately 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号