首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are produced by leukocytes and play a role in immune responses. They also function in normal brain physiology as well as in pathological conditions within the central nervous system, where they are produced by brain macrophages (microglia) and brain astrocytes. In this study, we document the ability of human immunodeficiency virus type 1 (HIV-1) to induce TNF alpha and IL-1 in primary rat brain cultures. While productive infection did not occur in these cells, it was not required for cytokine induction. Using monocyte/macrophage-tropic (JRFL) and T-cell-tropic (IIIB) strains of HIV-1, we were able to induce cytokines in both microglia and astrocytes. In addition to whole virus, recombinant envelope proteins also induced these cytokines. The induction of IL-1 and TNF alpha could be blocked by a panel of antibodies recognizing epitopes in the gp120 and gp41 areas of the envelope. Soluble recombinant CD4 did not block TNF alpha and IL-1 production. If TNF alpha and IL-1 can be induced in brain tissue by HIV-1, they may contribute to some of the neurologic disorders associated with AIDS.  相似文献   

2.
W Tadmori  D Mondal  I Tadmori    O Prakash 《Journal of virology》1991,65(12):6425-6429
Tumor necrosis factor alpha (TNF-alpha) is expressed in secreted and cell surface (csTNF-alpha) forms by activated monocytic and T cells. In this report, we demonstrate that csTNF-alpha may predominantly regulate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) activation in the promonocytic cell line U937 and in the Epstein-Barr virus-transformed B-cell line BH1. Anti-TNF-alpha antibody suppressed both the constitutive expression of the HIV-1 LTR in BH1 cells and the expression induced by phorbol 12-myristate 13-acetate in U937 cells. This suppression was found to be mediated via csTNF-alpha. No correlation between the HIV-1 LTR activation and the secretion of TNF-alpha was evident in these cell lines. Suppression of TNF-alpha secretion by cyclosporin A or by a serine protease inhibitor did not suppress the HIV-1 LTR activation. These observations suggest a novel biological role for csTNF-alpha in the immunopathogenesis of AIDS.  相似文献   

3.
4.
5.
To characterize the role of CD4 in human immunodeficiency virus type 1 (HIV-1) infection of macrophages, we examined the expression of CD4 by primary human monocyte-derived macrophages and studied the effect of recombinant soluble CD4 and anti-CD4 monoclonal antibodies on HIV-1 infection of these cells. Immunofluorescence and Western blot (immunoblot) studies demonstrated that both monocytes and macrophages display low levels of surface CD4, which is identical in mobility to CD4 in lymphocytes. Recombinant soluble CD4 and the anti-CD4 monoclonal antibody Leu3a blocked infection of macrophages by three different macrophage-tropic HIV isolates, and the cytopathic effects of HIV-1 infection were similarly prevented. Dose-response experiments using a prototype isolate which replicates in both macrophages and T lymphocytes showed that recombinant soluble CD4 inhibited infection of macrophages more efficiently than in lymphocytes. These results indicate that CD4 is the dominant entry pathway for HIV-1 infection of macrophages. In addition, recombinant soluble CD4 effectively blocks HIV-1 infection by a variety of macrophage-tropic strains and thus has the potential for therapeutic use in macrophage-dependent pathogenesis in HIV disease.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   

7.
8.
The presence of feline immunodeficiency virus (FIV) proviral DNA, expression of FIV p26 core protein, and production of tumor necrosis factor alpha (TNF-alpha) were assessed in sequential biopsies of spleen and lymph node sections, of mononuclear cells of the peripheral blood, and of the serum of specific-pathogen-free cats during the acute phase of FIV infection. A temporal relationship between TNF-alpha production and FIV p26 expression was noted. Two months following FIV infection, and preceding the detection of FIV viremia, levels of TNF-alpha in serum increased significantly (P = 0.04), and they remained elevated during FIV viremia in the third month postinfection. Immunoprecipitates representing expression of TNF-alpha and of FIV p26 were localized in common foci of lymph nodes of FIV-infected cats during this period of active viremia. With the advent of anti-FIV antibodies, circulating levels of TNF-alpha and p26 antigen and expression of TNF-alpha and p26 in the lymph nodes decreased during the fifth month postinfection, and p26 production became undetectable. With clearance of viremia, burden of proviral DNA in peripheral blood mononuclear cells became reduced (P = 0.041), with provirus remaining integrated principally within lymph nodes (P = 0.046). During aviremia, p26 expression was undetectable in any tissue but remained inducible in vitro. During acute FIV infection, TNF-alpha production and p26 expression are intimately linked.  相似文献   

9.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

10.
Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-α) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-α induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-α production.  相似文献   

11.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

12.
BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.  相似文献   

13.
Monoclonal antibodies (MAbs) to defined peptide epitopes on gp120 from human immunodeficiency virus type 1 were used to investigate the involvement of their epitopes in gp120 binding to the CD4 receptor. Recombinant vaccinia viruses were constructed that expressed either full-length gp120 (v-ED6), or a truncated gp120 lacking 44 amino acids at the carboxyl terminus (v-ED4). Binding of these glycoproteins to the CD4 receptor was detected directly with metabolically labeled gp120 or indirectly with the gp120 MAbs. Truncated gp120 from v-ED4 bound to CD4-positive cells less than 1/12 as well as gp120 from v-ED6, indicating that the C-terminal region of gp120, which is conserved in numerous isolates of human immunodeficiency virus type 1, is critical for CD4 binding. However, MAb 110-1, which recognizes a peptide contained in the region deleted from v-ED4 (amino acids 489 through 511), did not inhibit binding of gp120 to CD4. MAb 110-1 also reacted with gp120 bound to the CD4 receptor, indicating that the epitope for this antibody does not directly interact with CD4. A second MAb, 110-4, which recognizes a peptide epitope located between amino acids 303 and 323 and has potent viral neutralizing activity, also bound to gp120 on the CD4 receptor. Furthermore, pretreatment of gp120 with MAb 110-4 at concentrations approximately 1,000-fold higher than those required for complete virus neutralization inhibited subsequent CD4 binding by only about 65%. Taken together, these data suggest that neutralization mediated by antibody 110-4 does not result from binding of this MAb to the CD4-binding site of gp120.  相似文献   

14.
15.
C Tornatore  A Nath  K Amemiya    E O Major 《Journal of virology》1991,65(11):6094-6100
Human immunodeficiency virus type 1 (HIV-1) infection of the brain has been associated with a severe dementing illness in children and adults. However, HIV-1 antigens are most frequently found in macrophages and microglial cells. To determine the extent of susceptibility of neuroglial cells to infection, the HIV-1 genome was introduced into cells cultured from human fetal brain tissue. Astroglial cells rapidly transcribed the viral genome producing high levels of p24 protein and infectious virions which peaked two to three days posttransfection. Thereafter HIV-1 genome expression progressively diminished and a persistent phase of infection developed during which neither virus nor viral proteins could be demonstrated by immunodetection methods. Cocultivation with CD4+ T cells at any time during the persistent infection resulted in resumption of p24 synthesis and virus multiplication. The release of persistence did not require direct cell-cell contact between the glial and T cells, since separation of the two cell types across a permeable membrane resulted in a delayed but similar resumption of p24 synthesis and virus multiplication. The persistently infected glial cells could also be stimulated to produce viral p24 protein if either tumor necrosis factor alpha or interleukin-1 beta was added to the medium without T cells present. These results suggest that astrocytes may serve as an undetected reservoir for HIV-1 and disseminate the virus to other susceptible cells in the brain upon triggering by some cellular or biochemical signal.  相似文献   

16.
To examine the role of human T-lymphotropic virus type 1 (HTLV-1) Tax1 in the development of neurological disease, we studied the effects of extracellular Tax1 on gene expression in NT2-N cells, postmitotic cells that share morphologic, phenotypic, and functional features with mature human primary neurons. Treatment with soluble HTLV-1 Tax1 resulted in the induction of tumor necrosis factor alpha (TNF-alpha) gene expression, as detected by reverse-transcribed PCR and by enzyme-linked immunosorbent assay. TNF-alpha induction was completely blocked by clearance with anti-Tax1 monoclonal antibodies. Furthermore, cells treated with either a mock bacterial extract or with lipopolysaccharide produced no detectable TNF-alpha. Synthesis of TNF-alpha in response to soluble Tax1 occurred in a dose-dependent fashion between 0.25 and 75 nM and peaked within 6 h of treatment. Interestingly, culturing NT2-N cells in the presence of soluble Tax1 for as little as 5 min was sufficient to result in TNF-alpha production, indicating that the induction of TNF-alpha in NT2-N does not require Tax1 to be continually present in the culture medium. Treatment of the undifferentiated parental embryonal carcinoma cell line NT2 with soluble Tax1 did not result in TNF-alpha synthesis, suggesting that differentiation-dependent, neuron-specific factors may be required. These results provide the first experimental evidence that neuronal cells are sensitive to HTLV-1 Tax1 as an extracellular cytokine, with a potential role in the pathology of HTLV-1-associated/tropical spastic paraparesis.  相似文献   

17.
18.
A number of studies have indicated that central nervous system-derived cells can be infected with human immunodeficiency virus type 1 (HIV-1). To determine whether CD4, the receptor for HIV-1 in lymphoid cells, was responsible for infection of neural cells, we characterized infectable human central nervous system tumor lines and primary fetal neural cells and did not detect either CD4 protein or mRNA. We then attempted to block infection with anti-CD4 antibodies known to block infection of lymphoid cells; we noted no effect on any of these cultured cells. The results indicate that CD4 is not the receptor for HIV-1 infection of the glioblastoma line U373-MG, medulloblastoma line MED 217, or primary human fetal neural cells.  相似文献   

19.
We have previously postulated that the binding of the human immunodeficiency virus type 1 (HIV-1) to cell surface CD4 induces signal transduction pathways that down-modulate production of progeny virions in acutely infected T cells (M. Tremblay, S. Meloche, S. Gratton, M. A. Wainberg, and R.-P. Sékaly, EMBO J. 13:774-783, 1994). To evaluate the possibility that CD4 cross-linking might indeed affect viral gene expression, we have introduced a molecular construct made of the luciferase reporter gene placed under the control of the regulatory elements of HIV-1 in several CD4-positive T-cell lines. We found that cross-linking of CD4 with defective HIV-1 particles and heat-inactivated viruses inhibits long terminal repeat-dependent luciferase expression. Experiments revealed that the gp120-CD4 interaction was necessary to repress HIV-1 long terminal repeat-dependent luciferase activity. The cytoplasmic domain of CD4 was also found to be required for this effect to occur. The virus-mediated signal transduction was shown to be mediated via p56lck-dependent and -independent pathways. These results indicate that the earliest event in the HIV-1 replicative cycle, namely, the binding of the virus to its cellular receptor, can lead to signal transduction culminating in down-modulation of viral gene expression. Thus we propose that defective viruses could regulate the pathogenesis of HIV disease as they constitute the vast majority of circulating HIV-1 particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号