首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. T. Parker 《Human Evolution》1991,6(5-6):435-449
In this paper I present an hypothesis to explain the presence of mirror self-recognition (MSR) in great apes and human infants, and the absence of MSR in monkeys. This hypothesis is based on the following elements: 1) review of Gallupian studies of MSR in monkeys and apes; 2) review of Lewis & Brooks-Gunn's study for self-recognition in human infants; 3) application of the human model to comparative data on MSR in nonhuman primates; 4) discussion of cognitive correlates of MSR in human infants; 5) analysis of the cognitive correlates of MSR absence in monkeys, and MSR presence in apes; 6) comparative analysis of the modalities of occurrence of imitation and understanding of causality in monkeys and apes; and 7) a cladistic reconstruction of the evolution of MSR.  相似文献   

2.
The type of climbing exhibited by apes and atelines is argued to have been important in the evolution of specialized locomotion, such as suspensory locomotion and bipedalism. However, little is known about the mechanics of climbing in primates. Previous work shows that Asian apes and atelines use larger joint excursions and longer strides than African apes and the Japanese macaque, respectively. This study expands knowledge of climbing mechanics by providing the first quantitative kinematic data for vertical climbing in four prosimian species: three lorisid species (Loris tardigradus, Nycticebus coucang, and Nycticebus pygmaeus) that share with apes and atelines morphological traits arguably related to climbing, and a more generalized quadruped, Cheirogaleus medius. Subjects were videotaped as they climbed up a wooden pole. Kinematic values, such as step length and limb excursions, were calculated and compared between species. The results of this study show that lorises, like Asian apes and spider monkeys, use relatively larger joint excursions and longer steps than does C. medius during climbing. These data lend further support to the idea that some primate species (e.g., lorises, atelines, and apes) are more specialized kinematically and morphologically for climbing than others. Pilot data suggest that such kinematic differences in climbing style across broad phylogenetic groups may relate to the energetics of climbing. Such data may be important for understanding the morphological and kinematic adaptations to climbing exhibited by some primates.  相似文献   

3.
Evolution of hominoid locomotion is a traditional topic in primate evolution. Views have changed during the last decade because a number of crucial differences between early and advanced hominoid morphologies have been demonstrated. Increasing evidence on primate behaviour and ecology show that any direct analogies between living and fossil hominoids must be made extremely carefully. The necessity of synthesizing data on primate behaviour, locomotion, morphology and ecology and simultaneously defining the framework in which the data should be interpreted are explained. Results of our studies of ontogeny of locomotor and behavioural patterns (LBP) are presented that could help identify the main features of early hominoid locomotor patterns (LP) and the mechanisms of their changes. The early hominoid LP was different from those of pronograde monkeys and specialized antipronograde living apes. Some similar features could be expected between early hominoid LP and the LP of ceboid monkeys. Analogous mechanisms of change of LBP exist in all groups of living higher primates. Crucial early mechanisms of change are the ontogenetic shifts in LBP connected with ethoecological changes. Analysis of fossil evidence has shown that Miocene hominoids differ morphologically from any group of living primates. Certain features present in Miocene hominoids could be found in Atelinae and living Asian apes but they are limited to some functional regions of the postcrania only. Consequently the early hominoid general LP can not be strictly analogous either to that of any monkey group or to the LP of apes. We suppose that certain pronograde adaptations, such as climbing, bipedality, limited suspensory activity and sitting constituted the main part of their LP.  相似文献   

4.
Karyotypic fissioning theory has been put forward by a number of researchers as a possible driving force of mammalian evolution. Most recently, Giusto and Margulis (BioSystems, 13 (1981) 267–302) hypothesized that karyotypic fissioning best explains the evolution of Old World monkeys, apes, and humans. According to their hypothesis, hominoid karyotypes were derived from the monkey chromosome complement by just such such a fissioning event. That hypothesis is tested here by comparing the G-banded chromosomes of humans and great apes with eight species of Old World monkeys. Five submetacentric chromosomes between apes and monkeys have identical banding patterns and nine chromosomes share the same pericentric inversion. Such extensive karyological similarities are not in accodance with, or predicted by karyotypic fissioning. Apparently, karyotypic fissioning is an extremely uneconomical model of chromosomal evolution. The strong conservation of banding patterns sometimes involving the retention of identical chromosomes indicates that ancient linkages of genes have probably been maintained through many speciation events.  相似文献   

5.
Various members of the Pliopithecidae (Pliopithecus, Laccopithecus) and the Proconsulidae (Micropithecus, Dendropithecus, Limnoputhecus, Dionysopithecus, and Platdontopithecus) have been proposed as the ancestral hylobatid (gibbon), based largely on small size and simple-cusped, ape-like molars. However, this ignores evidence presented in early anatomical studies of living brachiating primates. All apes and several South American monkeys show structural anatomical adaptations for brachiation. The Pliopithecidae show some ceboid-like features in the hindlimb which suggest that this genus may have been partly suspensory and possibly comparable to spider monkeys, but without a prehensile tail. They were basically arboreal quadrupedal monkeys without any of the brachiator specializations. Large bodied apes add more traits in order to handle great weight. Among the small-bodied brachiators, only the hylobatids possess these large-brachiator traits. Such modifications serve no purpose other than to support a weight greater than 30 kg. The hylobatid gestation time and longevity are also characteristic only of much larger animals. The ancestral gibbon must have been among the large-bodied sivapithecines. This relationship is supported by body size, geography, and biochemical timing (pliopithecids were probably a distinct lineage in the late Oligocene). If a memeber of the Pliopithecidae were the ancestor of extant hylobatids, it would have had to have grown large, became adapted to brachiation, and then grown small again.Laccopithecus has been newly proposed as the ancestral gibbon. If it is not a member of the pliopithecids, with an age of less than 8 mya, then it could be a fossil hylobatid. It would have had to have separated from the Asian great ape line approximately 15 mya, developed full brachiation, and undergone a reduction in body size and dental sexual dimorphism.  相似文献   

6.
Left-sided maternal cradling has been widely reported in human populations. In this paper, I review the evidence of laterality in maternal cradling and infant positional biases in non-human primates. The review revealed some evidence of population-left sided cradling in great apes but little consistency in bias was found among Old and New World monkeys. Very little data have been reported in prosimians. I further describe how asymmetries in either maternal cradling or infant positional biases may explain individual and species differences in hand preference.  相似文献   

7.
The large-bodied hominoid from Moroto, Uganda has until recently been known only from proconsulid like craniodental remains and some vertebrae with modern ape like features. The discovery of two partial femora and the glenoid portion of a scapula demonstrates that the functional anatomy of Morotopithecus differed markedly from other early and middle Miocene hominoids. Previous studies have consistently associated the vertebral remains with a short, stiff back and with orthograde postures. Although the proximal femur more closely resembles the femora of monkeys than of apes and suggests a moderate degree of hip abduction, the distal femur resembles those of extant large bodied apes and suggests a varied loading regime and an arboreal repertoire that may have included substantial vertical climbing. The femoral shaft displays uniformly thick cortical bone, beyond the range of thickness seen in extant primates, and signifies higher axial loading than is typical of most extant primates. The glenoid fossa is broad and uniformly curved as in extant suspensory primates. Overall, Morotopithecus is reconstructed as an arboreal species that probably relied on forelimb-dominated, deliberate and vertical climbing, suspension and quadrupedalism. Morotopithecus thus marks the first appearance of certain aspects of the modern hominoid body plan by at least 20 Ma. If the suspensory and orthograde adaptations linking Morotopithecus to extant apes are synapomorphies, Morotopithecus may be the only well-documented African Miocene hominoid with a close relationship to living apes and humans.  相似文献   

8.
Ninety-seven specimens of sympatric monkeys and apes from East Malaysia and 115 monkeys and apes from West Africa are examined in order to evaluate the magnitude and nature of the great ape-monkey linear enamel hypoplasia (LEH) 'dichotomy'. This study demonstrates that great apes from both regions have a higher incidence of LEH and repetitive LEH than do gibbons and monkeys. However, the authors find that the dichotomy is not as clear-cut as previous research suggests, since some monkey samples exhibit high LEH frequencies. The authors evaluate the potential influence of great ape-monkey differences in crown height on this dichotomy. They show that canine crown height variation is weakly associated with LEH variation. Differences between monkeys and great apes in their crown formation spans and in their experience of environmental stress may be more likely causes of the dichotomy.  相似文献   

9.
The middle Miocene (15 Ma) Maboko Formation of Maboko Island and Majiwa Bluffs, southwestern Kenya, has yielded abundant fossils of the earliest known cercopithecoid monkey (Victoriapithecus macinnesi), and of a kenyapithecine hominoid (Kenyapithecus africanus), as well as rare proconsuline (Simiolus leakeyorum, cf. Limnopithecus evansi) and oreopithecine apes (Mabokopithecus clarki, M. pickfordi), and galagids (Komba winamensis). Specific habitat preferences can be interpreted from large collections of primate fossils in different kinds of paleosols (pedotypes). Fossiliferous drab-colored paleosols with iron-manganese nodules (Yom pedotype) are like modern soils of seasonally waterlogged depressions (dambo). Their crumb structure and abundant fine root-traces, as well as scattered large calcareous rhizoconcretions indicate former vegetation of seasonally wet, wooded grassland. Other fossiliferous paleosols are evidence of nyika bushland (Ratong), and early-successional riparian woodland (Dhero). No fossils were found in Mogo paleosols interpreted as saline scrub soils. Very shallow calcic horizons (in Yom, Ratong, and Mogo paleosols) and Na-montmorillonite (in Mogo) are evidence of dry paleoclimate (300-500 mm MAP=mean annual precipitation). This is the driest paleoclimate and most open vegetation yet inferred as a habitat for any Kenyan Miocene apes or monkeys. Victoriapithecus was abundant in dambo wooded grassland (Yom) and riparian woodland (Dhero), a distribution like that of modern vervet monkeys. Kenyapithecus ranged through all these paleosols, but was the most common primate in nyika bushland paleosols (Ratong), comparable to baboons and macaques today. Mabokopithecus was virtually restricted to riparian woodland paleosols (Dhero), and Simiolus had a similar, but marginally wider, distribution. Habitat preferences of Mabokopithecus and Simiolus were like those of modern colobus monkeys and mangabeys. A single specimen of Komba was found in dambo wooded grassland paleosol (Yom), a habitat more like that of the living Senegal bushbaby than of rainforest galagids. A shift to non-forest habitats may explain the terrestrial adaptations of Victoriapithecus, basal to the cercopithecid radiation, and of Kenyapithecus, basal to the hominoid radiation. Both taxa are distinct from earlier Miocene arboreal proconsulines, oreopithecines and galagids.  相似文献   

10.
There is considerable interest in comparative research on different species’ abilities to respond to human communicative cues such as gaze and pointing. It has been reported that some canines perform significantly better than monkeys and apes on tasks requiring the comprehension of either declarative or imperative pointing and these differences have been attributed to domestication in dogs. Here we tested a sample of chimpanzees on a task requiring comprehension of an imperative request and show that, though there are considerable individual differences, the performance by the apes rival those reported in pet dogs. We suggest that small differences in methodology can have a pronounced influence on performance on these types of tasks. We further suggest that basic differences in subject sampling, subject recruitment and rearing experiences have resulted in a skewed representation of canine abilities compared to those of monkeys and apes.  相似文献   

11.
Using PCR, two minisatellite loci showing extreme repeat-unit copy-number variation in humans have been characterized in great apes and monkeys. In contrast to humans, minisatellite locus MS32 is monomorphic with only 3-4 diverged repeat units in great apes, Old World and New World monkeys, this organization presumably representing the relatively stable ancestral precursor state of the human hypervariable locus. Similarly, minisatellite MS1 shows extreme repeat-copy-number variability in man compared with low copy number and minimal variability in great apes. Analysis of variant repeat units shows that the 5' and 3' regions of MS1 are relatively stable in great apes and man, and that variability in man is confined to the central region of the minisatellite. In contrast to the great apes, MS1 is highly variable in Old World monkeys. These results, as well as computer simulations of minisatellite evolution based on known mutation rates, show that short minisatellites are stable within the genome, and that the degree of polymorphism at a given locus can change dramatically over a short period of evolutionary time. The ability of hypervariable minisatellites to detect highly informative loci by cross-species hybridization is therefore largely unpredictable.  相似文献   

12.
Coding sequences of the paralogous FUT1 (H), FUT2 (Se), and Sec1 alpha 2-fucosyltransferase genes were obtained from different primate species. Analysis of the primate FUT1-like and FUT2-like sequences revealed the absence of the known human inactivating mutations giving rise to the h null alleles of FUT1 and the se null alleles of FUT2. Therefore, most primate FUT1-like and FUT2-like genes potentially code for functional enzymes. The Sec1-like gene encodes for a potentially functional alpha 2-fucosyltransferase enzyme in nonprimate mammals, New World monkeys, and Old World monkeys, but it has been inactivated by a nonsense mutation at codon 325 in the ancestor of humans and African apes (gorillas, chimpanzees). Human and gorilla Sec1's have, in addition, two deletions and one insertion, respectively, 5' of the nonsense mutation leading to proteins shorter than chimpanzee Sec1. Phylogenetic analysis of the available H, Se, and Sec1 mammalian protein sequences demonstrates the existence of three clusters which correspond to the three genes. This suggests that the differentiation of the three genes is rather old and predates the great mammalian radiation. The phylogenetic analysis also suggests that Sec1 has a higher evolutionary rate than FUT2 and FUT1. Finally, we show that an Alu-Y element was inserted in intron 1 of the FUT1 ancestor of humans and apes (chimpanzees, gorillas, orangutans, and gibbons); this Alu-Y element has not been found in monkeys or nonprimate mammals, which lack ABH antigens on red cells. A potential mechanism leading to the red cell expression of the H enzyme in primates, related to the insertion of this Alu-Y sequence, is proposed.  相似文献   

13.
At the University of Washington Regional Primate Research Center, a simian acquired immunodeficiency syndrome (SAIDS) associated with retroperitoneal fibromatosis (RF) has been observed in 82 macaques since 1976, including 77 pigtailed macaques (Macaca nemestrina), two long-tailed macaques (M. fascicularis), one Japanese macaque (M. fuscata) and two rhesus macaques (M. mulatta). The syndrome is characterized by immunodeficiency accompanied by a fibroproliferative lesion, primarily affects young monkeys (1-3 years) and has a high case fatality rate. Based on the occurrence of RF in colony-born and non-colony-born monkeys, the minimum incubation period for natural exposure is believed to be about 9 months. The incidence of RF was 0.9% in M. nemestrina, 0.1% in M. fascicularis, 1.0% in M. fuscata and 0.4% in M. mulatta. There were no significant differences in the incidence of RF by sex or seasonality. Epidemiologic studies were focused on 42 juvenile M. nemestrina that developed RF between January 1980 and June 1983, and the results were compared with 42 age- and sex-matched controls. The incidence of RF was 5.7% in monkeys 12-24 months old and 3.4% in monkeys 24-36 months old, but less than 1.0% in age groups of under 1 year and over 3 years. No significant associations were found for housing history, parentage, generations or ancestral origins. Epidemiologic information and preliminary viral studies suggest a type D retrovirus may be the causative agent in RF and SAIDS. RF associated with SAIDS appears to be an excellent model for Kaposi's sarcoma associated with human AIDS.  相似文献   

14.
Old World monkeys and apes have been reported to differ from New World monkeys in their abilities to discriminate colors across the visible spectrum. Old World monkeys and apes (Macaca, Pan, Pongo) discriminate colors quite accurately, while some New World monkeys studied (Saimiri, Cebus) have shown lower sensitivity to and poorer discrimination of long wavelength light. This study examined the color discrimination ability of another New World primate, the cotton-top tamarin, Saguinus oedipus oedipus (family Callitrichidae). The tamarins were trained to discriminate a set of Munsell color chips, both within the same hue category and from the 2 hue categories on either side of the training hue. Results indicated that the cotton-top tamarin can make accurate discriminations across the visible spectrum. Human subjects were tested under similar conditions in order to compare their color discrimination abilities to those of the tamarins. The tamarins and human subjects had the most difficulty discriminating the same hues. The discrimination abilities of the monkeys were assessed in relation to the coloration of fruits eaten in a natural environment. A list of the species of fruits commonly eaten by various species of New World monkeys was compiled and the coloration of fruits at maturity was noted. It was found that most New World primate species eat fruits whose mature coloration ranges across most of the spectrum.  相似文献   

15.
Twenty-one isoimmune sera produced in rhesus monkey (Macaca mulatta) containing type-specific antibodies for simian-type red cell antigens were tested for their cross-reactivity with red cells from crab-eating macaques (M. fascicularis). The majority of the antisera gave cross-reactions determining polymorphisms in the red cells of crab-eating macaques, homologous to those of rhesus monkeys. These results attest to the close taxonomic realationship between the two species of macaques, and have the practical implication that isoimmune sera produced for blood typing can also be used for typing red cells from related species, as has been also observed in studies on apes.  相似文献   

16.
Low micronutrient intake is implicated in a diversity of human health problems, ranging from problems associated with food insufficiency to those associated with food over-consumption. Humans are members of the order primates, suborder anthropoidea, and are most closely related to the great apes. Humans and apes are remarkably similar biologically. In the wild, apes and monkeys consume diets composed largely of plant foods, primarily the fruits and leaves of tropical forest trees and vines. Considerable evidence indicates that the ancestral line giving rise to humans (Homo spp.) was likewise strongly herbivorous (plant-eating). The wild plant parts consumed by apes and monkeys show moderate to high levels of many minerals and vitamins. The estimated daily intake of specific minerals, vitamin C and some other vitamins by wild primates is often quite high in comparison to intake levels of these same micronutrients recommended for humans. Are the high micronutrient intakes of wild primates simply a non-functional, unavoidable by-product of their strongly plant-based diets or might they actually be serving important as yet undetermined immunological or other beneficial functions? A better understanding of the basis for this apparent difference between humans and wild primates could help to clarify the range and proportions of micronutrients best suited for optimal human development, health and longevity.  相似文献   

17.
Among primates, apes and monkeys are known to use their hands and to exhibit independent control of their fingers. In comparison, Prosimii are thought to have less digital individualization and to use their mouth more commonly for prehension. Unfortunately, prehension and manipulation studies in Prosimii have been conducted in conditions constraining the subject to grasp with the hand. Moreover, the effect of food size remains unexplored, even though it could affect the use of the hands versus the mouth. Thus, whether prosimians use the hand or the mouth to grasp and manipulate food items of different sizes in unconstrained conditions remains unclear. To address this question, we characterized the eating and manipulation patterns of Microcebus murinus in unconstrained conditions, using three food sizes. The results showed that M. murinus showed (i) an eating pattern similar to that of rodents, with smaller food items being grasped with the mouth, (ii) a greater tendency to use the hands for prehension of larger foods, and (iii) plasticity during food manipulation similar to that which has been observed in rodents. These results are discussed in the framework of grasping in mammals and are used to discuss the origins of prehension in primates.  相似文献   

18.
Little information is available on the response of vervet monkeys to different housing conditions or on the suitability of enrichment devices or methods for vervet monkeys. In this study, the authors evaluated the occurrence of stereotyped behavior in adult vervet monkeys under various conditions of housing and enrichment. The variables included cage size, cage level (upper or lower), enrichment with a foraging log, enrichment with an exercise cage and presence of a mate. The authors first determined the incidence of stereotyped behavior in captive-bred, singly housed adult female and male vervet monkeys. They then exposed monkeys to different housing and enrichment situations and compared the incidence of stereotyped behavior among the monkeys. The authors found that more females than males engaged in stereotyped behavior and that females, on average, engaged in such behavior for longer periods of time than males. Stereotyped behavior was most often associated with a small, single cage. The average amount of observed stereotyped activity in monkeys housed in a small cage was significantly lower when the monkeys had access to either a foraging log or an exercise cage. Stereotyped behavior was also lower in female monkeys that were housed (either with a male or without a male) in a larger cage. The least amount of abnormal behavior was associated with the largest, most complex and enriched housing situation. Males and females housed in cages on the lower level of two-level housing engaged in more stereotyped behavior than did monkeys housed in the upper level, regardless of the presence or type of enrichment provided.  相似文献   

19.
The susceptibility to transformation with Epstein-Barr virus (EBV) and the prevalence of antibodies reactive to EBV were examined in 43 primate species. In vitro EBV infection was revealed in lymphocytes from Old World monkeys, including patas monkeys and the colobines, as well as in lymphocytes from the apes. Antibodies reactive to EBV-early antigen/viral capsid antigen (EA/VCA) were detected in all the species of Old World monkeys and apes examined and in two out of seven species of New World monkeys.  相似文献   

20.
This paper is a review of laboratory research on sensory capacities in Primates with emphasis on evolutionary changes in the capacities. Man, great apes and Old World monkeys have virtually identical color vision, a result consistent with the generalization that these relatively diverse species have reached a plateau in the evolution of color vision, Capuchin and squirrel monkeys are protonomalous trichromats thus suggesting a widespread relative insensitivity to red among New World monkeys. Of the prosimians, only tree shrews have been extensively tested for color vision capability and they are deuteranopic dichromats.There is clear evidence of a decline in the upper audible frequencies and the most audible frequencies during Primate evolution. Although the olfactory portion of the brain has declined markedly in relative size during Primate evolution, there is no corresponding research showing difference in olfactory sensitivity across the living Primate genera. Existing research on gustatory sensitivity in Primates is too limited to permit any evolutionary conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号