首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Ube2J2 enzyme functions in the ubiquitination of proteins at the ER. Here we demonstrate that it, and a second ubiquitin conjugating (Ubc) enzyme Ube2G2, are unstable, and incubation of transfected cells with proteasome inhibitors increased steady-state protein levels. For Ube2J2, pharmacological induction of the unfolded protein response (UPR) did not significantly alter ectopic protein levels, however the effect of proteasomal inhibition was abolished if the enzyme was inactivated or truncated to disrupt its ER-localization. These results suggest for the first time that the steady state expression of Ubcs’ may be important in regulating the degradation of ER proteins in mammalian cells.  相似文献   

2.
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum‐associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48‐linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin‐tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95–107 and 130–135) flanking the active site cysteine are poorly defined. 15N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester‐linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side‐chains of Asp98 or Asp99. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
UbcH7 is a human E2 conjugating enzyme in the ubiquitin-dependent protein degradation pathway. The resonance assignments of UbcH7 will assist in elucidating the structural basis of interactions that occur within ubiquitination.  相似文献   

5.
For cell regulation, E2-like ubiquitin-fold modifier conjugating enzyme 1 (Ufc1) is involved in the transfer of ubiquitin-fold modifier 1 (Ufm1), a ubiquitin like protein which is activated by E1-like enzyme Uba5, to various target proteins. Thereby, Ufc1 participates in the very recently discovered Ufm1-Uba5-Ufc1 ubiquination pathway which is found in metazoan organisms. The structure of human Ufc1 was solved by using both NMR spectroscopy and X-ray crystallography. The complementary insights obtained with the two techniques provided a unique basis for understanding the function of Ufc1 at atomic resolution. The Ufc1 structure consists of the catalytic core domain conserved in all E2-like enzymes and an additional N-terminal helix. The active site Cys116, which forms a thio-ester bond with Ufm1, is located in a flexible loop that is highly solvent accessible. Based on the Ufc1 and Ufm1 NMR structures, a model could be derived for the Ufc1-Ufm1 complex in which the C-terminal Gly83 of Ufm1 may well form the expected thio-ester with Cys116, suggesting that Ufm1-Ufc1 functions as described for other E1–E2–E3 machineries. α-helix 1 of Ufc1 adopts different conformations in the crystal and in solution, suggesting that this helix plays a key role to mediate specificity. Gaohua Liu and Farhad Forouhar have made equal contributions to this work and they both should be considered as first authors.  相似文献   

6.
The ubiquitin system represents a selective mechanism for intracellular proteolysis in eukaryotic cells that involves the sequential activity of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). The identification of these proteins and their cellular targets, as well as structural data, are essential to understanding how this system operates in the eukaryotic cell. In the present study, the open reading frame of the human ubiquitin-conjugating enzyme UBE2G2 was isolated from a human brain cDNA panel, cloned into pET28a vector and expressed in Escherichia coli. The His-tagged protein was then purified through nickel-affinity chromatography and subjected to structural and functional studies using circular dichroism (CD) and an in vitro ubiquitin-binding assay, respectively. Our results showed that the production of the HISUBE2G2 protein in bacteria, carried out with 0.1 mM of IPTG at 30 degrees C, was successfully achieved, rendering high concentrations of soluble, pure and stable enzyme after a single purification step. The recombinant protein was able to bind ubiquitin molecules when exposed to a HeLa cell extract during the ubiquitin assay. Moreover, the fact that HISUBE2G2 was expressed in its active form is supported by the typical alpha/beta secondary structure specific to other class I E2 enzymes displayed during the CD assay.  相似文献   

7.
The transfer of ubiquitin (Ub) to a substrate protein requires a cascade of E1 activating, E2 conjugating, and E3 ligating enzymes. E3 Ub ligases containing U-box and RING domains bind both E2~Ub conjugates and substrates to facilitate transfer of the Ub molecule. Although the overall mode of action of E3 ligases is well established, many of the mechanistic details that determine the outcome of ubiquitination are poorly understood. CHIP (carboxyl terminus of Hsc70-interacting protein) is a U-box E3 ligase that serves as a co-chaperone to heat shock proteins and is critical for the regulation of unfolded proteins in the cytosol. We have performed a systematic analysis of the interactions of CHIP with E2 conjugating enzymes and found that only a subset bind and function. Moreover, some E2 enzymes function in pairs to create products that neither create individually. Characterization of the products of these reactions showed that different E2 enzymes produce different ubiquitination products, i.e. that E2 determines the outcome of Ub transfer. Site-directed mutagenesis on the E2 enzymes Ube2D1 and Ube2L3 (UbcH5a and UbcH7) established that an SPA motif in loop 7 of E2 is required for binding to CHIP but is not sufficient for activation of the E2~Ub conjugate and consequent ubiquitination activity. These data support the proposal that the E2 SPA motif provides specificity for binding to CHIP, whereas activation of the E2~Ub conjugate is derived from other molecular determinants.  相似文献   

8.
FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z.  相似文献   

9.
Ube2g2 is a human ubiquitin conjugating (E2) enzyme involved in the endoplasmic reticulum-associated degradation pathway, which is responsible for the identification and degradation of unfolded and misfolded proteins in the endoplasmic reticulum compartment. The Ube2g2-specific role is the assembly of Lys-48-linked polyubiquitin chains, which constitutes a signal for proteasomal degradation when attached to a substrate protein. NMR chemical shift perturbation and paramagnetic relaxation enhancement approaches were employed to characterize the binding interaction between Ube2g2 and ubiquitin, Lys-48-linked diubiquitin, and Lys-63-linked diubiquitin. Results demonstrate that ubiquitin binds to Ube2g2 with an affinity of 90 μM in two different orientations that are rotated by 180° in models generated by the RosettaDock modeling suite. The binding of Ube2g2 to Lys-48- and Lys-63-linked diubiquitin is primarily driven by interactions with individual ubiquitin subunits, with a clear preference for the subunit containing the free Lys-48 or Lys-63 side chain (i.e. the distal subunit). This preference is particularly striking in the case of Lys-48-linked diubiquitin, which exhibits an ~3-fold difference in affinities between the two ubiquitin subunits. This difference can be attributed to the partial steric occlusion of the subunit whose Lys-48 side chain is involved in the isopeptide linkage. As such, these results suggest that Lys-48-linked polyubiquitin chains may be designed to bind certain proteins like Ube2g2 such that the terminal ubiquitin subunit carrying the reactive Lys-48 side chain can be positioned properly for chain elongation regardless of chain length.  相似文献   

10.
We analysed the polymorphisms at rs78202224 (C/A) for HSF1 gene, rs139496713 (C/T) and rs45504694 (C/A) for HSF2 gene and rs116868327 (G/A) for UBE2I gene in 547 infertile cases (non-obstructive azoospermia = 464, asthenozoospermia = 83) and 419 proven fertile controls of similar age group and ethnicity. SNP genotyping was done using AgenaMassARRY platform (Agena Bioscience, CA). Common, heterozygous, rare genotypes and allelic frequencies were analysed using dominant, recessive and co-dominant models. Data shows no significant association between HSF1, HSF2 polymorphisms and male infertility. However, under dominant (GG vs GA+AA) and co-dominanat (GG vs GA) model, polymorphism at the rs116868327 (G/A) locus in UBE2I gene was found to be linked with asthenozoospermia in males with a significant odd-ratio of 6.91 (confidence interval at 95% was 1.52-31.46; p=0.017). Moreover, frequency of rare allele was higher (2.4%) compared to controls (0.4%). Thus, this data showed a significant risk of developing asthenozoospermic condition in males (Odds ratio= 6.75; Confidence interval at 95%= 1.50-30.49; P= 0.018]. Hence, more number of genotyping studies along with the functional assay in multiple cohorts is needed to validate potential variants associated with male infertility.  相似文献   

11.
We report the synthesis of fluorescently labeled ubiquitin (Ub) and its use for following ubiquitin transfer to various proteins. Using Oregon green (Og) succinimidyl ester, we prepared a population of Ub mainly labeled by a single Og molecule; greater than 95% of the Og label is associated with Lys 6 of Ub. We demonstrate that Og-Ub is efficiently accepted by Ub-utilizing enzymes, such as the human ubiquitin-activating enzyme (E1). We used this fluorescent substrate to follow the steady-state kinetics of human E1-catalyzed Ub-transfer to the ubiquitin-carrier enzyme Ubc4. In this reaction, E1 uses three substrates: ATP, Ubc4, and Ub. The steady-state kinetics of Og-Ub utilization by E1 is presented. We have also used analytical ultracentrifugation methods to establish that E1 is monomeric under our assay condition (low salt) as well as under physiological condition (150 mM NaCl).  相似文献   

12.
Ubiquitination plays an important role in many biological processes, including DNA repair, cell cycle regulation, and protein degradation. In the latter pathway the ubiquitin-conjugating enzymes or E2 enzymes are important proteins forming a key E2-ubiquitin thiolester prior to substrate labelling. While the structure of the 150-residue catalytic domain has been well characterized, a subset of E2 enzymes (class II) carry a variable length C-terminal `tail' where structural detail is not available. The presence of this C-terminal extension plays an important role in target recognition, ubiquitin chain assembly and oligomerization. In this work NMR spectroscopy was used to determine the secondary structure of the 215-residue yeast E2 protein Ubc1 and the interactions of its C-terminus with the catalytic domain. The C-terminal tail of Ubc1 was found to contain three -helices between residues D169-S176, K183-L193 and N203-L213 providing the first evidence for a well-defined secondary structure in this region. Chemical shift mapping indicated that residues in the L2 loop of the catalytic domain were most affected indicating the C-terminus of Ubc1 likely interacts with this region. This site of interaction is distinct from that observed in the E2-ubiquitin thiolester and may act to protect the catalytic C88 residue and direct the interaction of ubiquitin in the thiolester intermediate.  相似文献   

13.
We have identified by differential display a number of novel genes that are expressed in hypopharyngeal head and neck squamous cell carcinoma. We report here the characterisation of one of these novel human genes, LOC92912, that encodes a protein of 375 amino acids. The protein contains a RWD domain, a coiled-coil, and an E2 ubiquitin conjugating enzyme domain. LOC92912 is upregulated in about 85% of tumour samples. It is expressed in tumour masses and in invasive epithelium, and is located in the cytoplasm of cells. To gain insights into its functions, we identified potential interacting partners by immunoaffinity purification of the flag tagged protein followed by MALDI peptide mass fingerprinting mass spectrometry. Actin and six actin-binding proteins were unambiguously identified as potential interacting partners, suggesting that LOC92912's functions may be linked with the cytoskeleton. This novel human gene may represent a new target for cancer therapeutics.  相似文献   

14.
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

15.
Protein ubiquitylation depends upon the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). All E2s have a conserved ubiquitin-conjugating (UBC) domain but many have variable extensions N- and C-terminal to the UBC domain. For many E2s, the function of the extension is not well understood. Here, we show that the N-terminal extension of the UBE2E proteins regulates formation of polyubiquitin chains by the processive UBC domain. Target proteins are therefore monoubiquitylated by full-length UBE2E, whereas the UBC domain alone polyubiquitylates proteins. Although the N-terminal extension of UBE2E1 is largely disordered in solution, these residues have a critical role in limiting chain building, and when fused to the highly processive E2, UBE2D2, ubiquitylation is limited. For some E2s, interaction of ubiquitin with the ‘backside’ of the UBC domain promotes polyubiquitylation. However, interaction of ubiquitin with the backside of the UBC domain of UBE2E1 does not appear to be important for processivity. This study underscores the importance of studying full-length E2 proteins and not just the highly conserved core domain.  相似文献   

16.
Ubiquitin-conjugating enzymes (UBE2s or E2s) are characterized by the presence of a highly conserved ubiquitin-conjugating (UBC) domain, which predominantly determines the type of ubiquitin chains and directly controls the cellular fate of the substrate. In this study, an E2 homolog was identified and functionally characterized in abalone, which we named ab-UBE2D. The full-length cDNA consists of 1005 bp with an ORF encoding a protein of 147 amino acids. The deduced amino acid sequence shows ab-UBE2D shares conserved UBC domain with other E2 proteins and belongs to class I E2 enzyme family, which are further confirmed by phylogenetic tree analysis. Real-time PCR and western blot analyses showed that ab-UBE2D was ubiquitously expressed in abalone and the expression level of ab-UBE2d was significantly induced by LPS and Poly (I:C). Immunofluorescence microscopy staining demonstrated that native ab-UBE2D was mainly distributed in the cytoplast. Ubiquitination assay showed that ab-UBE2D had ubiquitin conjugating activity to form the enzyme-(Ub)n conjugates. Taken together, these results strongly suggest that ab-UBE2D is an E2 homolog and it may be involved in the immune response of abalone, Haliotis diversicolor supertexta.  相似文献   

17.
18.
Incubation of peripheral blood leukocytes with arachidonic acid (and ionophore A23187) led to the formation of leukotriene B4, Δ6-trans-leukotriene B4, Δ6-trans-12-epi-leukotriene B4, 5-hydroxy-icosatetraenoic acid, 12-hydroxy-icosatetraenoic acid and of 5S,12S-dihydroxy-6,8,10,14-(E,Z,E,Z)-icosatetraenoic acid (5S,12S-DiHETE). Incubation of leukocytes with leukotriene A4 resulted in the formation of leukotriene B4 and of its two Δ6-trans-isomers but not of the 5S,12S-DiHETE. 18O2 labeling experiments have shown that the hydroxyl groups at C5 and C12 in the 5S,12S-DiHETE are derived from molecular oxygen. The tetraacetylenic analog of arachidonic acid was found to be a potent inhibitor of the formation of the 5S,12S-DiHETE whereas it potentiated the synthesis of the 5-hydroxy acid and of leukotriene B4. Addition of the 12-hydroxy-icosatetraenoic acid to leukocytes, or of the 5-hydroxy-icosatetraenoic acid to a suspension of platelets caused the formation of the 5S,12S-DiHETE. It is concluded that the 5S,12S-DiHETE is not derived from leukotriene A4 but is a product of the successive reactions of arachidonic acid with two lipoxygenases of different positional specificities.  相似文献   

19.
Ubiquitin-activating enzyme (E1) is a key regulator in protein ubiquitination, which lies on the upstream of the ubiquitin-related pathways and determines the activation of the downstream enzyme cascade. Thus far, no structural information about the human ubiquitin-activating enzyme has been reported. We expressed and purified the N-terminal domains of human E1 and determined their crystal structures, which contain inactive adenylation domain (IAD) and the first catalytic cysteine half-domain (FCCH). This study presents the crystal structure of human E1 fragment for the first time. The main structure of both IAD and FCCH superimposed well with their corresponding domains in yeast Uba1, but their relative positions vary significantly. This work provides new structural insights in understanding the mechanisms of ubiquitin activation in humans.  相似文献   

20.
A simple and one-pot approach for the synthesis of highly functionalized novel (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamide derivatives from different 2-(2′,3′,4′,9′-tetrahydro-carbazol-1′-ylidene)-propanedinitriles and aryl/heteroaryl carbaldehydes via vinylogous aldol reaction. The structures of the molecules were designated by FT-IR, 1H NMR, 13C NMR studies, elemental and X-ray crystallographic analysis. The synthesized pure products have been screened for in vitro antibiofilm inhibitory activity towards antibiotic-resistant pathogenic organisms. All the synthesized compounds showed biofilm inhibition. Promisingly, the moieties 3a, 3d and 3h showed higher antibiofilm activity at biofilm inhibitory concentration (BIC) (200?μg/mL) against bacterial pathogens. Among the three moieties, 3a showed high prospective against E. coli biofilm with minimal and maximal BIC percentage of 32% (10?μg/mL) and 89% (100?μg/mL) and chosen lowest BIC for further evaluation. Also, the 3a generate ROS two fold at 1?h treatment in E. coli biofilm. The 3a exhibited no toxic effect on cell viability upto 75?μg/mL in HEK293 cell lines. The results of the present study reveal that among (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamides, (E)-2-benzylideno-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-(Z)-α-carbamino-α-cyano-1-ylidene (3a) could be exploited as an excellent antibiofilm agent against carbapenem-resistant E. coli bacteria strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号