首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Aim The Mediterranean Basin is a centre of radiation for numerous species groups. To increase our understanding of the mechanisms underlying speciation and radiation events in this region, we assessed the phenotypic variability within the Pipistrellus pipistrellus–pygmaeus–hanaki species complex. Although bats form the second largest mammalian order, studies of insular evolution in this group are scarce. We approached this problem from a microevolutionary perspective and tested for the recurrence of the insular syndrome. Location The Mediterranean Basin, with a special focus on isolated populations from Corsica, the Maghreb, Cyprus, Cyrenaica and Crete. Methods Phenotypic variability was assessed by cranial morphometrics using the coordinates of 41 3D landmarks and associated geometric‐morphometric methods. We analysed 125 specimens representing all of the lineages in the species complex. Differences between taxa and between insular and continental populations in cranial size, shape, form and allometries were tested using analyses of variance and visualized using boxplots and canonical variate analysis. Relationships between molecular data from a previous study (cytochrome b sequences) and morphometric data were tested with co‐inertia analyses (RV test) and multivariate regressions. Results The three species were relatively well differentiated in cranial size and shape, and each species showed a significant amount of inter‐population variability. Comparisons of pairs of insular versus continental populations revealed heterogeneities in cranial patterns among island phenotypes, suggesting no recurrent insular syndrome. Molecular and phenotypic traits were correlated, except for molecular and lateral cranium shape. Main conclusions The Pipistrellus pipistrellus pygmaeus hanaki species complex exhibits phenotypic variability as a result of the fragmentation of its distribution (especially on islands), its phylogenetic and phylogeographic history and, most probably, other evolutionary factors that were not investigated in this study. We found no recurrent pattern of evolution on islands, indicating that site‐specific factors play a prevailing role on Mediterranean islands. The correlation between molecular and phenotypic data is incomplete, suggesting that factors other than phylogenetic relationships, potentially connected with feeding ecology, have played a role in shaping cranial morphology in this species complex.  相似文献   

2.
Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range‐wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species’ range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in‐depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies.  相似文献   

3.
Life history and population dynamic patterns of Gambusia affinis in southeastern Louisiana varied spatially and temporally in 1990 and 1991, but were consistent with previous reports of this species in the southern regions of its natural range. Several differences exist among populations in different geographic regions within the United States, as reported in the literature, which do not follow a' native v . introduced' dichotomy: (1) brood size decreases and offspring size increases from north to south; (2) large overwintered females in northern areas produce more broods within a season than those in southern populations, while the reverse is true for young-of–year females; (3) minimum size at first reproduction follows a seasonal pattern within populations, but tends to be smaller in southern and larger in northern and Hawaiian populations; (4) synchronous reproduction early in the season is characteristic of northern populations, but does not occur in southern areas; and (5) mosquitofish reproduce year–round in Hawaii, while 'southern' populations within the continental U.S. cease reproduction during winter.  相似文献   

4.
Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times.  相似文献   

5.
The genetic structure of nine Peromyscus maniculatus nebrascensis demes from southeastern Wyoming was determined by analyzing allozymes encoded by 23 genetic loci with polyacrylamide gel electrophoresis. Genetic variability is extremely high for two genetic parameters; the proportion of loci heterozygous per individual averaged 0.16, and the proportion of loci polymorphic per deme averaged 0.41. Previous estimates of genetic heterozygosity for species within the genus Peromyscus have a mean of 0.06. The results of the present study suggest that genetic heterozygosity is considerably higher within P. maniculatus demes than within demes of other species in the genus. Geographic range is correlated with heterozygosity among Peromyscus species, as is adaptive divergence into broad-niched species. These correlates suggest that high heterozygosity may reflect an adaptation to a variable environment.  相似文献   

6.
7.
Allelic variation at the Amy locus was studied in eight natural populations from the central and northern range of D. subobscura, and the geographical pattern of Amy polymorphism over the range of this species was described. Even though regional and local differences in gene frequencies were found, in general the same alleles occur at high, intermediate and low frequencies, in nearly all populations. There are no significant differences in allele frequencies, but there is significant difference in the degree of heterozygosity among groups of populations from the northern, central and southern range. An analysis of population subdivision indicates that heterogeneity within populations is higher than between populations. Genetic distance values indicate that there is a variable degree of geographical differentiation between local populations. Variability within and between continental and insular populations is also discussed.  相似文献   

8.
We critically review the two major theories of adaptive evolution developed early in this century, Wright's shifting balance theory and Fisher's large population size theory, in light of novel findings from field observations, laboratory experiments, and theoretical research conducted over the past 15 years. Ecological studies of metapopulations have established that the processes of local extinction and colonization of demes are relatively common in natural populations of many species and theoretical population genetic models have shown that these ecological processes have genetic consequences within and among local demes. Within demes, random genetic drift converts nonadditive genetic variance into additive genetic variance, increasing, rather than limiting, the potential for adaptation to local environments. For this reason, the genetic differences that arise by drift among demes, can be augmented by local selection. The resulting adaptive differences in gene combinations potentially contribute to the genetic origin of new species. These and other recent findings were not discussed by either Wright or Fisher. For example, although Wright emphasized epistatic genetic variance, he did not discuss the conversion process. Similarly, Fisher did not discuss how the average additive effect of a gene varies among demes across a metapopulation whenever there is epistasis. We discuss the implications of such recent findings for the Wright-Fisher controversy and identify some critical open questions that require additional empirical and theoretical study.  相似文献   

9.
The Mediterranean common shrub Pistacia lentiscus is distributed in a wide range of habitats along the climatic gradient in Israel. We studied the factors that may shape its morphological, physiological, and genetic differentiation. We examined the phenotypic and molecular genetic variability among and within the six Israeli populations as correlated with the local environmental conditions. The genetic structure of the shrub on the island of Cyprus was also examined. Plant morphological parameters correlated significantly with the local environmental conditions, especially with the annual precipitation and temperature. Gene diversity did not differ significantly among locations, and, hence, no differentiation among Israeli populations or between populations in Israel and Cyprus was found. The major part of the molecular variance (69%) was found within the populations, 22% of the variance was found between Israel and Cyprus and 9% among the populations within the region. Gene flow estimates among all the tested populations were high with no indication for the isolation by distance. We did not find any pattern of ecologically related genetic differentiation; hence, the morphological and physiological differences are probably due to phenotypic plasticity. It seems that the ability of P. lentiscus to express the different phenotypes in response to the varying conditions in the Mediterranean region is an adaptive trait in a species that is characterized by intensive gene flow.  相似文献   

10.
11.
The genus Bidens (Asteraceae) has undergone extensive adaptive radiation on the Hawaiian Islands. The 19 species and eight subspecies endemic to Hawaii exhibit much more morphological and ecological differentiation than the continental members of the genus. However, the Hawaiian taxa have the same chromosome number and retain the capacity to interbreed in all possible combinations. Twenty-two populations of 15 Hawaiian taxa and four populations of American taxa were compared at 21 loci controlling eight enzyme systems. Populations of Hawaiian taxa are highly polymorphic. However, little genetic differentiation has occurred among taxa in spite of the high levels of genetic variability. Genetic identities calculated for pairs of populations show that populations of the same taxon are genetically more similar than are populations belonging to different taxa, but all values are high. The level of genetic differentiation that has occurred among the species of Hawaiian Bidens is comparable to the level of genetic differences found among populations within single continental plant species. Moreover, there is no correlation between the isozyme data and morphological data. No groups of taxa are evident in the genetic data, although morphological groups exist. Genetic differentiation at isozyme loci has not occurred at the same rate as the acquisition of presumably adaptive morphological and ecological characters in Hawaiian Bidens. Adaptive radiation may be limited to a few genes controlling morphological and ecological characters.  相似文献   

12.
Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge.  相似文献   

13.
The geology and climate of the western Mediterranean area were strongly modified during the Late Tertiary and the Quaternary. These geological and climatic events are thought to have induced changes in the population histories of plants in the Iberian Peninsula. However, fine-scale genetic spatial architecture across western Mediterranean steppe plant refugia has rarely been investigated. A population genetic analysis of amplified fragment length polymorphism variation was conducted on present-day, relict populations of Ferula loscosii (Apiaceae). This species exhibits high individual/population numbers in the middle Ebro river valley and, according to the hypothesis of an abundant-centre distribution, these northern populations might represent a long-standing/ancestral distribution centre. However, our results suggest that the decimated southern and central Iberian populations are more variable and structured than the northeastern ones, representing the likely vestiges of an ancestral distribution centre of the species. Phylogeographical analysis suggests that F. loscosii likely originated in southern Spain and then migrated towards the central and northeastern ranges, further supporting a Late Miocene southern-bound Mediterranean migratory way for its oriental steppe ancestors. In addition, different glacial-induced conditions affected the southern and northern steppe Iberian refugia during the Quaternary. The contrasting genetic homogeneity of the Ebro valley range populations compared to the southern Iberian ones possibly reflects more severe bottlenecks and subsequent genetic drift experienced by populations of the northern Iberia refugium during the Pleistocene, followed by successful postglacial expansion from only a few founder plants.  相似文献   

14.
The ‘central‐peripheral’ hypothesis has provided a baseline for many studies of population dynamics and genetic variability at species distribution limits. Although peripheral populations are often assumed to occur in ecologically marginal conditions, little is known about whether they effectively occur in a distinct ecological niche. A cross‐taxa analysis of 11 Mediterranean vascular plants were studied. We quantified variation in the ecological niche between populations at the northern range limits of species in Mediterranean France and those in the central part of the distribution in continental Spain or Italy in 2013–2014. We analyzed both the macro‐ecological niche where populations occur in terms of broad habitat and altitudinal range and the micro‐ecological niche where individual plants grow in terms of soil and structural biotic and abiotic characteristics. Most species occur in a single broad habitat type common to central and peripheral populations and have a narrower altitudinal range in the latter. In contrast, for the micro‐ecological niche we detected marked variation in several niche parameters among central and peripheral populations. Although many differences are species‐specific some are common to several species. We found a trend towards narrower micro‐niche breadth in peripheral populations. Our results illustrate the importance of studying the precise ecological characteristics where plants grow and the pertinence of a multi‐species approach to correctly assess niche variation. The ecological originality of peripheral populations underlines their evolutionary potential and conservation significance.  相似文献   

15.
Combining molecular analyses with geological and palaeontological data may reveal timing and modes for the divergence of lineages within species. The Mediterranean Basin is particularly appropriate for this kind of multidisciplinary studies, because of its complex geological history and biological diversity. Here, we investigated chloroplast DNA of Quercus suber populations in order to detect possible relationships between their geographical distribution and the palaeogeographical history of the western Mediterranean domain. We analysed 110 cork oak populations, covering the whole distribution range of the species, by 14 chloroplast microsatellite markers, among which eight displayed variation among populations. We identified five haplotypes whose distribution is clearly geographically structured. Results demonstrated that cork oak populations have undergone a genetic drift geographically consistent with the Oligocene and Miocene break-up events of the European-Iberian continental margin and suggested that they have persisted in a number of separate microplates, currently found in Tunisia, Sardinia, Corsica, and Provence, without detectable chloroplast DNA modifications for a time span of over 15 million years. A similar distribution pattern of mitochondrial DNA of Pinus pinaster supports the hypothesis of such long-term persistence, in spite of Quaternary climate oscillations and of isolation due to insularity, and suggests that part of the modern geographical structure of Mediterranean populations may be traced back to the Tertiary history of taxa.  相似文献   

16.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.  相似文献   

17.
Previous genetic analyses have demonstrated that two phonic types of one of the most common European bats, the Common pipistrelle, belong to distinct species, although they are almost identical morphologically (45 kHz Pipistrellus pipistrellus and 55 kHz Pipistrellus pygmaeus). To reconstruct the history of the species complex and explain the codistribution of both forms in Europe and the Mediterranean, we performed phylogenetic analysis based on a 402-bp portion of the cytochrome b gene. Particular attention was paid to the eastern and southern parts of the range where no data were available. We found further distinctive allopatric haplotypes from Libya and Morocco. The difference of about 6-7% described in the Libyan population suggests the occurrence of a new species in the southern Mediterranean. The species status of Moroccan population is also discussed. The phylogeographic patterns obtained and analysis of fossil records support the hypothesis of expansion of both species into Europe from the Mediterranean region during the Holocene. The allopatric speciation model fits our data best. The paleobiographic scenario envisaged is corroborated also by molecular clock estimations and correlations with Late Neogene environmental changes in the Mediterranean region which ended with the Messinian salinity crisis.  相似文献   

18.
The time associated with speciation varies dramatically among lower vertebrates. The nature and timing of divergence is investigated in the fantastic dwarf gecko Sphaerodactylus fantasticus complex, a nominal species that occurs on the central Lesser Antillean island of Guadeloupe and adjacent islands and islets. This is compared to the divergence in the sympatric anole clade from the Anolis bimaculatus group. A molecular phylogenetic analysis of numerous gecko populations from across these islands, based on three mitochondrial DNA genes, reveals several monophyletic groups occupying distinct geographical areas, these being Les Saintes, western Basse Terre plus Dominica, eastern Basse Terre, Grand Terre, and the northern and eastern islands (Montserrat, Marie Galante, Petite Terre, Desirade). Although part of the same nominal species, the molecular divergence within this species complex is extraordinarily high (27% patristic distance between the most divergent lineages) and is compatible with this group occupying the region long before the origin of the younger island arc. Tests show that several quantitative morphological traits are correlated with the phylogeny, but in general the lineages are not uniquely defined by these traits. The dwarf geckos show notably less nominal species-level adaptive radiation than that found in the sympatric southern clade of Anolis bimculatus , although both appear to have occupied the region for a broadly similar period of time. Nevertheless, the dwarf gecko populations on Les Saintes islets are the most morphologically distinct and are recognized as a full species ( Sphaerodactylus phyzacinus ), as are anoles on Les Saintes ( Anolis terraealtae ).  相似文献   

19.
ABSTRACT: BACKGROUND: Domestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin. RESULTS: According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: 'Irano-Caucasian', 'North Mediterranean Basin' and 'South Mediterranean Basin'. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the 'Irano-Caucasian' gene pool, considered as a secondary centre of diversification, to the northern and southwestern Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the 'North Mediterranean Basin' and 'South Mediterranean Basin' to the secondary centre of diversification. CONCLUSIONS: A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the 'Irano-Caucasian' gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.  相似文献   

20.
One of the most widely distributed bats in the New World, the big brown bat (Eptesicus fuscus) exhibits well-documented geographic variation in morphology and life history traits, suggesting the potential for significant phylogeographic structure as well as adaptive differentiation among populations. In a pattern broadly consistent with morphologically defined subspecies, we found deeply divergent mitochondrial lineages restricted to different geographic regions. In contrast, sequence data from two nuclear loci suggest a general lack of regional genetic structure except for peripheral populations in the Caribbean and Mexico/South America. Coalescent analyses suggest that the striking difference in population structure between genomes cannot be attributed solely to different rates of lineage sorting, but is likely due to male-mediated gene flow homogenizing nuclear genetic diversity across most of the continental range. Despite this ongoing gene flow, selection has apparently been effective in producing and maintaining adaptive differentiation among populations, while strong female site fidelity, maintained over the course of millions of years, has produced remarkably deep divergence among geographically isolated matrilines. Our results highlight the importance of evaluating multiple genetic markers for a more complete understanding of population structure and history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号