首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of NF-kappaB has been shown to be regulated by multiple phosphorylations of IkappaBs and the NF-kappaB p65 subunit. Here, we characterized the intracellular signaling pathway leading to phosphorylation of p65 on Ser-536 using a novel anti-phospho-p65 (Ser-536) antibody. The Ser-536 of endogenous p65 was rapidly phosphorylated in response to a wide variety of NF-kappaB stimulants including TNF-alpha in the cytoplasm and rapidly dephosphorylated in the nucleus. The TNF-alpha-but not IL-1beta-induced Ser-536 phosphorylation was severely impaired in murine embryonic fibroblasts derived from traf2-/-traf5-/- mice. Bay 11-7082, an inhibitor of IkappaB phosphorylation, inhibited the TNF-alpha-induced phosphorylation in vivo. In addition, overexpression of TGF-beta-activated kinase 1 (TAK1), IKKalpha and IKKbeta stimulated the phosphorylation, and their dominant negative mutants blocked the TNF-alpha-induced phosphorylation. Moreover, small interfering RNAs (siRNAs) against TAK1, IKKalpha and IKKbeta blocked the phosphorylation of endogenous p65. On the other hand, calyculin-A, a protein phosphatase inhibitor, blocked the dephosphorylation in the nucleus in vivo. These results indicate that similar signaling pathways were utilized for the phosphorylations of IkappaBalpha and p65, which further support the idea that both IkappaB and NF-kappaB are substrates for the IKK complex in the activation of NF-kappaB.  相似文献   

2.
3.
4.
The activation of NF-kappaB by neutrophil lactoferrin (Lf) is regulated via the IkappaB kinase (IKK) signaling cascade, resulting in the sequential phosphorylation and degradation of IkappaB. In this study, we observed that Lf protein augmented p65 phosphorylation at the Ser(536), but not the Ser(276) residue, and stimulated the translocation of p65 into the nucleus. Lf was also shown to enhance the association between p65 and CREB-binding protein/p300 in vivo. To elucidate the mechanism by which Lf triggers these signaling pathways, we attempted to delineate the roles of the upstream components of the IKK complex, using their dominant-negative mutants and IKKalpha(-/-) and IKKbeta(-/-) mouse embryonic cells. We demonstrated that both IKKalpha and IKKbeta as well as NF-kappaB-inducing kinase are indispensable for Lf-induced p65 phosphorylation. However, MAPK kinase kinase 1 is not essentially required for this activation. We also observed that Lf-induced p65 phosphorylation was either partially or completely abrogated as the result of treatment with the mutant forms of TNFR-associated factor (TRAF) 2, TRAF5, or TRAF6. Moreover, we demonstrated that Lf directly interacted with TRAF5. Expression of the dominant-negative mutant of TRAF5 or its small interfering RNA almost completely abrogated the Lf-induced p65 phosphorylation. These results suggest that signaling pathways, including TRAFs/NF-kappaB-inducing kinase/IKKs, may be involved in the regulation of Lf-induced p65 activation, thereby resulting in the activation of members of the NF-kappaB family.  相似文献   

5.
6.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

7.
8.
9.
10.
Activation of NF-kappaB leads to expression of ample genes that regulate inflammatory and osteoclastogenic responses. The process is facilitated by induction of IkappaB kinase (IKK) complex that phosphorylates IkappaB and leads to its dissociation from the NF-kappaB complex, thus permitting activation of NF-kappaB. The IKK complex contains primarily IKKalpha, IKKbeta, and the regulatory kinase IKKgamma, also known as NEMO. NEMO regulates the IKK complex activity through its binding to carboxyl-terminal region of IKKalpha and IKKbeta, termed NEMO-binding domain (NBD). In this regard, a cell-permeable NBD peptide has been shown to block association of NEMO with the IKK complex and inhibit activation of NF-kappaB. Given the pivotal role of cytokine-induced NF-kappaB in osteoclastogenesis and inflammatory bone loss, we deduced that cell-permeable TAT-NBD peptide may hinder osteoclastogenesis and bone erosion in inflammatory arthritis. Using NBD peptides, we show that wild type, but not mutant, NBD blocks IKK activation and reduces cytokine-induced promoter and DNA binding activities of NF-kappaB and inhibits cytokine-induced osteoclast formation by osteoclast precursors. Consistent with the key role of NF-kappaB in osteoinflammatory responses in vivo, wild type TAT-NBD administered into mice prior to induction of inflammatory arthritis efficiently block in vivo osteoclastogenesis, inhibits focal bone erosion, and ameliorates inflammatory responses in the joints of arthritic mice. The mutant NBD peptide fails to exert these functions. These results provide strong evidence that IKKs are potent regulators of cytokine-induced osteoclastogenesis and inflammatory arthritis. More importantly, blockade of NEMO assembly with the IKK complex is a viable strategy to avert inflammatory osteolysis.  相似文献   

11.
12.
13.
14.
15.
The IkappaB kinase (IKK)-related kinase NAK (also known as TBK or T2K) contributes to the activation of NF-kappaB-dependent gene expression. Here we identify NAP1 (for NAK-associated protein 1), a protein that interacts with NAK and its relative IKK epsilon (also known as IKKi). NAP1 activates NAK and facilitates its oligomerization. Interestingly, the NAK-NAP1 complex itself effectively phosphorylated serine 536 of the p65/RelA subunit of NF-kappaB, and this activity was stimulated by tumor necrosis factor alpha (TNF-alpha). Overexpression of NAP1 specifically enhanced cytokine induction of an NF-kappaB-dependent, but not an AP-1-dependent, reporter. Depletion of NAP1 reduced NF-kappaB-dependent reporter gene expression and sensitized cells to TNF-alpha-induced apoptosis. These results define NAP1 as an activator of IKK-related kinases and suggest that the NAK-NAP1 complex may protect cells from TNF-alpha-induced apoptosis by promoting NF-kappaB activation.  相似文献   

16.
17.
The NF-kappaB pathway is important in the control of the immune and inflammatory response. One of the critical events in the activation of this pathway is the stimulation of the IkappaB kinases (IKKs) by cytokines such as tumor necrosis factor-alpha and interleukin-1. Although the mechanisms that modulate IKK activation have been studied in detail, much less is known about the processes that down-regulate its activity following cytokine treatment. In this study, we utilized biochemical fractionation and mass spectrometry to demonstrate that protein phosphatase 2Cbeta (PP2Cbeta) can associate with the IKK complex. PP2Cbeta association with the IKK complex led to the dephosphorylation of IKKbeta and decreased its kinase activity. The binding of PP2Cbeta to IKKbeta was decreased at early times post-tumor necrosis factor-alpha treatment and was restored at later times following treatment with this cytokine. Experiments utilizing siRNA directed against PP2Cbeta demonstrated an in vivo role for this phosphatase in decreasing IKK activity at late times following cytokine treatment. These studies are consistent with the ability of PP2Cbeta to down-regulate cytokine-induced NF-kappaB activation by altering IKK activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号