首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定   总被引:33,自引:1,他引:32  
利用6mol/L HCI沉淀枯草芽孢杆菌B2菌株的去细胞培养液,甲醇抽提获得脂肽类抗生素粗提物,过Sephadex LH-20层析柱获得粗纯化物,经MALDI-TOF-MS检测表明B2菌株仅含有表面活性素一种脂肽类抗生素。利用HPLC SMART SYSTEM,将粗纯化物过μPRC C2/C18层析柱对表面活性素变异体进行分离后获得纯化物。经MALDI-TOF-PSD—MS对纯化物的结构分析表明,B2菌株的表面活性素变异体由13、14和15个碳原子的脂肪酸链以及L-Glu-L-Leu—D—Leu—L-Val-L-Asp-D—Leu-L-Leu七环肽组成。  相似文献   

2.
Previous NMR studies on surfactin proposed two gamma or beta-turn-containing conformers while recent CD studies described beta-sheets and alpha-helices in surfactin. Since these data were not obtained in the same conditions, the conformation of surfactin was reinvestigated by FTIR spectroscopy, a diagnostic method for beta-sheets. In trifluoroethanol, the FTIR spectra of surfactin and its diester are compatible with gamma and/or beta-turn(s) and the differences in their CD spectra show the importance of the Glu(1) and Asp(5) COOH groups in stabilizing the lipopeptide conformation. The calcium-induced spectral changes of both lipopeptides suggest a first binding of the divalent ions to the surfactin COOH groups (until calcium-lipopeptide mole ratio reached 1) followed by bulk conformational changes (at higher mole ratios). In Tris buffer at pH 8.5, the FTIR amide I band shape, without the typical 1610-1628 and 1675-1695 cm(-1) bands, ascertains the absence of beta-sheets.  相似文献   

3.
C Ullrich  B Kluge  Z Palacz  J Vater 《Biochemistry》1991,30(26):6503-6508
The lipopeptide antibiotic surfactin is a potent extracellular biosurfactant produced by various Bacillus subtilis strains. Biosynthesis of surfactin was studied in a cell-free system prepared from B. subtilis ATCC 21332 and OKB 105, which is a transformant producing surfactin in high yield [Nakano, M. M., Marahiel, M. A., & Zuber, P. (1988) J. Bacteriol. 170, 5662-5668]. Cell material was disintegrated by treatment with lysozyme and French press. A cell-free extract was prepared by ammonium sulfate fractionation, which catalyzed the formation of surfactin at the expense of ATP. Lipopeptide biosynthesis required the L-amino acid components of surfactin and D-3-hydroxytetradecanoyl-coenzyme A thioester. D-Leucine which is present in surfactin was not utilized but inhibited the biosynthetic process. The structure of surfactin, synthesized enzymatically in vitro, was confirmed by chromatographic comparison with the authentic compound and by amino acid analyses. An enzyme fraction was prepared by gel permeation chromatography which catalyzed ATP/pyrophosphate exchange reactions dependent on the component amino acids of surfactin. This enzyme fraction was capable of binding substrate amino acids covalently, probably via thioester linkages. The formation of these intermediates was inhibited by various thiol blocking reagents and phenylmethanesulfonyl fluoride. De novo synthesis of the lipopeptide was not observed with this partially purified enzyme fraction most likely due to the lack of an acyltransferase activity required for linking the beta-hydroxy fatty acid to the peptide moiety.  相似文献   

4.
Of the 13 strains of Bacillus subtilis tested for the coproduction of the lipopeptide surfactin and the antifungal lipopeptides of the iturin family, only 1 produced both lipopeptides with a high yield. The cultures were made in a synthetic medium. Several L-amino acids and various carbon sources were good substrates for the lipopeptide production. The maximum yield of surfactin was about 110 mg/liter and that of iturin A about 39 mg/liter/absorbance unit for the best strain, B. subtilis S 499.  相似文献   

5.
Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and possesses several other interesting biological activities. This work deals with the molecular mechanism of membrane permeabilization by incorporation of surfactin. The surfactin-induced vesicle contents leakage was monitored by following release of carboxyfluorescein entrapped into unilamellar vesicles made of palmitoyloleoylphosphatidylcholine (POPC). The effect of the addition of cholesterol, dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylethanolamine (POPE) was also checked. It was observed that surfactin was able to induce content leakage at concentrations far below the onset surfactin/lipid ratio for membrane solubilization to occur, which in our system was around 0.92. Electron microscopy showed that vesicles were present after addition of surfactin at a ratio below this value, whereas no vesicles could be observed at ratios above it. Cholesterol and POPE attenuated the membrane-perturbing effect of surfactin, whereas the effect of DPPC was to promote surfactin-induced leakage, indicating that bilayer sensitivity to surfactin increases with the lipid tendency to form lamellar phases, which is in agreement with our previous observation that surfactin destabilizes the inverted-hexagonal structure. Fourier-transform infrared spectroscopy (FTIR) was used to specifically follow the effect of surfactin on different parts of the phospholipid bilayer. The effect on the C=O stretching mode of vibration of POPC indicated a strong dehydration induced by surfactin. On the other hand, the C-H stretching bands showed that the lipopeptide interacts with the phospholipid acyl chains, resulting in considerable membrane fluidization. The reported effects could be useful to explain surfactin-induced 'pore' formation underlying the antibiotic and other important biological actions of this bacterial lipopeptide.  相似文献   

6.
Fengycin is a biologically active lipopeptide produced by several Bacillus subtilis strains. The lipopeptide is known to develop antifungal activity against filamentous fungi and to have hemolytic activity 40-fold lower than that of surfactin, another lipopeptide produced by B. subtilis. The aim of this work is to use complementary biophysical techniques to reveal the mechanism of membrane perturbation by fengycin. These include: 1), the Langmuir trough technique in combination with Brewster angle microscopy to study the lipopeptide penetration into monolayers; 2), ellipsometry to investigate the adsorption of fengycin onto supported lipid bilayers; 3), differential scanning calorimetry to determine the thermotropic properties of lipid bilayers in the presence of fengycin; and 4), cryogenic transmission electron microscopy, which provides information on the structural organization of the lipid/lipopeptide system. From these experiments, the mechanism of fengycin action appears to be based on a two-state transition controlled by the lipopeptide concentration. One state is the monomeric, not deeply anchored and nonperturbing lipopeptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity. The mechanism, thus, appears to be driven mainly by the physicochemical properties of the lipopeptide, i.e., its amphiphilic character and affinity for lipid bilayers.  相似文献   

7.
Bacillus subtilis RB14, a dual producer of lipopeptide antibiotics iturin A and surfactin undergoes sporulation in the submerged fermentation and the production of these secondary metabolites becomes halted. In this study, production of lipopeptide antibiotics was investigated by induced germination of the spores by heat-activation and nutrient supplementation. The induced spores became metabolically active vegetative state and produced lipopeptide antibiotic iturin A that added up the total production at the end of the fermentation. However, additional production of surfactin was not observed. This second time iturin A production by the germinated cells from the spores was defined as second stage production.  相似文献   

8.
Surfactin, a lipopeptide biosurfactant produced as micelles by Bacillus subtilis, was recovered from the fermentation broth by ultrafiltration with a 30 kDa MWCO membrane. The retained surfactin micelles were then ruptured and collected in the permeate by adding methanol to 50% (v/v). The final yield of surfactin was 95%.  相似文献   

9.
Production of a lipopeptide antibiotic, surfactin, in solid state fermentation (SSF) on soybean curd residue, Okara, as a solid substrate was carried out using Bacillus subtilis MI113 with a recombinant plasmid pC112, which contains lpa-14, a gene related to surfactin production cloned at our laboratory from a wild-type surfactin producer, B. subtilis RB14. The optimal moisture content and temperature for the production of surfactin were 82% and 37 degrees C, respectively. The amount of surfactin produced by MI113 (pC112) was as high as 2.0 g/kg wet weight, which was eight times as high as that of the original B. subtilis RB14 at the optimal temperature for surfactin production, 30 degrees C. Although the stability of the plasmid showed a similar pattern in both SSF and submerged fermentation (SMF), production of surfactin in SSF was 4-5 times more efficient than in SMF. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
A study on the interactions of surfactin with phospholipid vesicles.   总被引:5,自引:0,他引:5  
Surfactin, an acidic lipopeptide produced by various strains of Bacillus subtilis, behaves as a very powerful biosurfactant and posses several other interesting biological activities. By means of differential scanning calorimetry and X-ray diffraction the effect of surfactin on the phase transition properties of bilayers composed of different phospholipids, including lipids forming hexagonal-HII phases, has been studied. The interactions of surfactin with phosphatidylcholine and phosphatidylglycerol seem to be optimal in the case of myristoyl acyl chains, which have a similar length to the surfactin hydrocarbon tail. Data are shown that support formation of complexes of surfactin with phospholipids. The ionized form of surfactin seems to be more deeply inserted into negatively charged bilayers when Ca2+ is present, also supporting the formation of surfactin-Ca2+ complexes. In mixtures with dielaidoylphosphatidylethanolamine, a hexagonal-HII phase forming lipid, surfactin displays a bilayer stabilizing effect. Our results are compatible with the marked amphiphilic nature of surfactin and may contribute to explain some of its interesting biological actions; for instance the formation of ion-conducting pores in membranes.  相似文献   

11.
12.
A lipopeptide producing strain was isolated from an oil field and identified as Bacillus licheniformis HSN221. Nine different substrates were used to cultivate the strain under the same incubation conditions. Using a rapid method, Electrospray Ionization Mass Spectrometry (ESI-MS) combined with Thin Layer Chromatography (TLC), nine different lipopeptide homologues were found and identified. The strain produced four [Leu]surfactin homologues, surfactin C13, surfactin C14, surfactin C15 and surfactin C16, when cultivated in the medium with glucose, yeast extract and ammonium chloride, but it produced five lichenysin homologues, lichenysin C12, lichenysin C13, lichenysin C14, lichenysin C15 and lichenysin C16, when cultivated in the remaining eight media. Additionally, it showed that the type and relative content of each homologue were consistent with in each medium which is helpful for optimizing the medium components to cultivate the similar species.  相似文献   

13.
利用酸沉、醇提和薄层层析等方法从Bacillus natto TK-1发酵液中分离脂肽,经过HPLC、ESI MS和IR分析可知分离物是分子量为1036Da的脂肪酸链上有15个碳的环状脂肽surfactin。细胞增殖抑制实验显示surfactin在体外能抑制肿瘤细胞MCF-7的增殖,并且呈现出浓度和时间依赖关系,其中细胞被处理48 h时的IC50是38.77mg/L。通过HE染色观察和TUNEL实验发现surfactin可诱导MCF-7细胞凋亡,而且这种抑制作用呈现明显的时间依赖性。  相似文献   

14.
《Process Biochemistry》2014,49(10):1699-1707
This study reports the potential of a marine bacterium, Bacillus mojavensis A21, to produce lipopeptide biosurfactants. The crude lipopeptide mixture was found to be very effective in reducing surface tension to 31 mN m−1. PCR experiments using degenerate primers revealed the presence of nonribosomal peptide synthetases genes implied in the biosyntheses of fengycin and surfactin. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) performed on whole cells of B. mojavensis A21 confirmed the presence of lipopeptides identified as members of surfactin and fengycin families. Further, a detailed analysis performed by MALDI-TOF-TOF revealed the presence of pumilacidin compounds. The crude lipopeptide mixture was tested for its inhibitory activity against Gram-positive and Gram-negative bacteria, and fungal strains. It was found to display significant antimicrobial activity. Strain A21 lipopeptide mixture was insensitive to proteolytic enzymes, stable between pH 3.0 and 11.0, and resistant to high temperature. Production of lipopeptides is a characteristic of several Bacillus species, but to our knowledge this is the first report involving identification of pumilacidin, surfactin and fengycin isoforms in a B. mojavensis strain.  相似文献   

15.
16.
The lipopeptide, surfactin, is produced by Bacillus subtilis. A study has been made on large-scale production of this surfactant. A good yield was obtained from a glucose substrate fermentation by continuously removing the product by foam fractionation. The surfactin could be easily recovered from the collapsed foam by acid precipitation. The yield was also improved by the addition of either iron or manganese salts. Hydrocarbon addition to the medium, which normally increases biosurfactant production, completely inhibited surfactin production by B. subtilis.  相似文献   

17.
Bais HP  Fall R  Vivanco JM 《Plant physiology》2004,134(1):307-319
Relatively little is known about the exact mechanisms used by Bacillus subtilis in its behavior as a biocontrol agent on plants. Here, we report the development of a sensitive plant infection model demonstrating that the bacterial pathogen Pseudomonas syringae pv tomato DC3000 is capable of infecting Arabidopsis roots both in vitro and in soil. Using this infection model, we demonstrated the biocontrol ability of a wild-type B. subtilis strain 6051 against P. syringae. Arabidopsis root surfaces treated with B. subtilis were analyzed with confocal scanning laser microscopy to reveal a three-dimensional B. subtilis biofilm. It is known that formation of biofilms by B. subtilis is a complex process that includes secretion of surfactin, a lipopeptide antimicrobial agent. To determine the role of surfactin in biocontrol by B. subtilis, we tested a mutant strain, M1, with a deletion in a surfactin synthase gene and, thus, deficient in surfactin production. B. subtilis M1 was ineffective as a biocontrol agent against P. syringae infectivity in Arabidopsis and also failed to form robust biofilms on either roots or inert surfaces. The antibacterial activity of surfactin against P. syringae was determined in both broth and agar cultures and also by live-dead staining methods. Although the minimum inhibitory concentrations determined were relatively high (25 microg mL(-1)), the levels of the lipopeptide in roots colonized by B. subtilis are likely to be sufficient to kill P. syringae. Our results collectively indicate that upon root colonization, B. subtilis 6051 forms a stable, extensive biofilm and secretes surfactin, which act together to protect plants against attack by pathogenic bacteria.  相似文献   

18.
Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity   总被引:2,自引:0,他引:2  
The synthesis of extracellular molecules such as biosurfactants should have major consequences on bacterial adhesion. These molecules may be adsorbed on surfaces and modify their hydrophobicities. Certain strains of Bacillus subtilis synthesize the lipopeptides, which exhibit antibiotic and surface active properties. In this study the high-performance liquid chromatography (HPLC) analysis of the culture supernatants of the seven B. subtilis strains, showed that the lipopeptide profile varied greatly according to the strain. Among the three lipopeptide types, only iturin A was produced by all B. subtilis strains. Bacterial hydrophobicity, evaluated by the water contact angle measurements and the hydrophobic interaction chromatography, varied according to the strain. Two strains (ATCC 15476 and ATCC 15811) showing extreme behaviors in term of hydrophobicity were selected to study surfactin and iturin A effects on bacterial hydrophobicity. The two lipopeptides modified the B. subtilis surface hydrophobicity. Their effects varied according to the bacterial surface hydrophobic character, the lipopeptide type and the concentration. Lipopeptide adsorption increased the hydrophobicity of the hydrophilic strain but decreased that of the hydrophobic. Comparison of lipopeptide effects on B. subtilis surface hydrophobicity showed that surfactin was more effective than iturin A for the two strains tested.  相似文献   

19.
Amino Acids - The aim of this study was to evaluate the effect of spreading the lipopeptide surfactin, for short time (10/20 s), on dentin wettability. Study groups were surfactin: 2.8;...  相似文献   

20.
【目的】从昆虫黑水虻分离的肠道细菌进行抗植物病原菌的拮抗菌筛选,对获得有拮抗活性的肠道细菌进行活性物质的分子鉴定。【方法】用稀释涂布法从水虻肠道中分离菌株,采用平板对峙法进行抗菌筛选,对有抗菌活性的菌株通过生理生化实验、16S rRNA鉴定和进化树分析确定其种属。参考已知脂肽合成关键基因设计引物,以拮抗菌总DNA为模板进行PCR扩增,对目的片段进行测序。【结果】通过抗菌筛选获得一株对水稻黄单胞菌以及小麦纹枯病病原菌等有很强抑制效果的水虻肠道细菌BSF-CL,经鉴定为枯草芽胞杆菌。脂肽合成关键基因PCR结果显示BSF-CL菌株具有脂肽Iturin和Surfactin合成的关键基因。推测BSF-CL很可能合成脂肽Iturin和Surfactin。【结论】从水虻肠道中分离出对水稻黄单胞菌有很强抑菌活性的菌株,分离菌被鉴定为一种枯草芽胞杆菌,通过活性物质的分子克隆鉴定初步推测其活性物质可能为脂肽Iturin和Surfactin。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号